
AIMBAT

User Manual

Version 0.1.1

Xiaoting Lou1*

1Department of Earth and Planetary Sciences, Northwestern University,

Evanston, Illinois, USA
*Email: xlou@u.northwestern.edu

October 1, 2012

Contents

1 Introduction 2

2 Installation 3

2.1 Install Dependencies . 3

2.1.1 Mac . 3

2.1.2 Linux . 4

2.2 Install pysmo.sac and pysmo.aimbat . 4

2.2.1 Install pysmo.sac . 5

2.2.2 Install pysmo.aimbat . 5

3 Tutorial 7

3.1 Parameter Configuration . 7

3.2 SAC Data Access . 8

3.2.1 Python Object for SAC Files . 8

3.2.2 Python Pickle for SAC Files . 10

3.3 SAC Plotting and Phase Picking . 12

3.3.1 SAC Plotting . 13

3.3.2 SAC Phase Picking . 16

3.4 Measuring Teleseismic Body Wave Arrival Times 19

3.4.1 Automated Phase Alignment . 19

3.4.2 Interactive Quality Control and Graphical User Interface 21

4 Appendix 26

A List of Files and Directories in the Packages 26

1

1 Introduction

AIMBAT (Automated and Interactive Measurement of Body wave Arrival Times) is an open-

source software package for efficiently measuring teleseismic body wave arrival times for large

seismic arrays (Lou et al., 2012). It is based on a widely used method called MCCC (Multi-

Channel Cross-Correlation) developed by VanDecar and Crosson (1990). The package is

automated in the sense of initially aligning seismograms for MCCC which is achieved by

an ICCS (Iterative Cross Correlation and Stack) algorithm. Meanwhile, a GUI (graphical

user interface) is built to perform seismogram quality control interactively. Therefore, user

processing time is reduced while valuable input from a user’s expertise is retained. As

a byproduct, SAC (Goldstein et al., 2003) plotting and phase picking functionalities are

replicated and enhanced.

Modules and scripts included in the AIMBAT package were developed using Python pro-

gramming language (http://www.python.org) and its open-source modules on the Mac

OS X platform since 2009. The original MCCC code (VanDecar and Crosson, 1990) was

transcribed into Python. The GUI of AIMBAT was inspired and initiated at the 2009

EarthScope USArray Data Processing and Analysis Short Course (http://www.iris.edu/

hq/es_course/). AIMBAT runs on Mac OS X, Linux/Unix and Windows thanks to the

platform-independent feature of Python. It’s been tested on Mac OS 10.6.8 and 10.7 and

Fedora 16.

The AIMBAT software package is distributed under the GNU General Public License Version

3 (GPLv3) as published by the Free Software Foundation (http://www.gnu.org/licenses/

gpl.html).

2

http://www.python.org
http://www.iris.edu/hq/es_course/
http://www.iris.edu/hq/es_course/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

2 Installation

2.1 Install Dependencies

The AIMBAT package depends on the standard libraries of Python 2.7 (http://docs.

python.org/library/), including os, sys, ConfigParser(argparse), optparse, contextlib,

pickle/cPickle, gzip, and bz2. AIMBAT also utilizes Numpy (http://numpy.scipy.org)

and Scipy (http://scipy.org) for numerical array computation, and Matplotlib (Hunter ,

2007) for 2-D plotting and GUI applications. These packages need to be installed before

using AIMBAT.

2.1.1 Mac

For Mac users, we recommend Macports (http://http://www.macports.org/) to install

the dependent packages of AIMBAT. After installing Macports, run the following commands

with superuser privilege:

port install python27

port install py27-numpy

port install py27-scipy

port install py27-matplotlib

port install py27-ipython

port install python select

Python 2.7 is thus installed to the <prefix> directory, which is /opt/local/Library/

Frameworks/Python.framework/Versions/2.7 for this case. Corresponding packages Numpy,

Scipy and Matplotlib are installed to the global site-packages directory <prefix>/lib/

python2.7/site-packages.

Installation of the last two packages are optional. ipython is an enhanced interactive Python

shell. python select is used to select default Python version by the following command:

port select --set python python27

3

http://docs.python.org/library/
http://docs.python.org/library/
http://numpy.scipy.org
http://scipy.org
http://http://www.macports.org/
<prefix>
/opt/local/Library/Frameworks/Python.framework/Versions/2.7
/opt/local/Library/Frameworks/Python.framework/Versions/2.7
<prefix>/lib/python2.7/site-packages
<prefix>/lib/python2.7/site-packages

2.1.2 Linux

For Linux users, package management tools work similarly, such as yum on Red Hat/Fedora

system:

yum install python.x86 64

yum install numpy.x86 64

yum install scipy.x86 64

yum install python-matplotlib.x86 64

and aptitude on Debian system:

aptitude install python

aptitude install python-numpy

aptitude install python-scipy

aptitude install python-matplotlib

The <prefix> directory is /usr.

2.2 Install pysmo.sac and pysmo.aimbat

AIMBAT is released as a sub-package of pysmo in the name of pysmo.aimbat along with

another sub-package pysmo.sac. The latest releases of pysmo.sac and pysmo.aimbat are

available for download at both

http://www.earth.northwestern.edu/~xlou/aimbat.html

and github:

https://github.com/pysmo/sac

https://github.com/pysmo/aimbat

Decompress the gzipped source tar balls in the directory where you want to install the

packages (<pkg-install-dir>):

tar zxvf pysmo-sac-0.5.tar.gz

tar zxvf pysmo-aimbat-0.1.1.tar.gz

4

<prefix>
/usr
http://www.earth.northwestern.edu/~xlou/aimbat.html
<pkg-install-dir>

2.2.1 Install pysmo.sac

Python module Distutils is used to write a setup.py script to easily build, distribute, and

install pysmo.sac. In the directory <pkg-install-dir>/pysmo-sac-0.5, type

python setup.py build

python setup.py install

to install it and its package information file pysmo.sac-0.5-py2.7.egg-info to the global

site-packages directory <prefix>/lib/python2.7/site-packages, which is the same as

Numpy, Scipy, and Matplotlib.

If you don’t have write permission to the global site-packages directory, use the ”--user”

option to install to <userbase>/lib/python2.7/site-packages:

python setup.py install --user

2.2.2 Install pysmo.aimbat

Three sub-directories are included in the <pkg-install-dir>/pysmo-aimbat-0.1.1 direc-

tory: example, scripts and src, which contain example SAC data files, Python scripts to

run at command line, and Python modules to install, respectively.

The core cross-correlation functions in pysmo.aimbat are written in both Python/Numpy

(xcorr.py) and Fortran (xcorr.f90). Therefore, we need to use Numpy’s Distutils

module for enhanced support of Fortran extension. The usage is similar to the standard

Distutils.

In the directory <pkg-install-dir>/pysmo-aimbat-0.1.1, type

python setup.py build --fcompiler=gfortran

python setup.py install

to install the src directory to <prefix>/lib/python2.7/site-packages/pysmo/aimbat.

Other Fortran compilers can be specified instead of gfortran.

Add <pkg-install-dir>/pysmo-aimbat-0.1.1/scripts to environment variable PATH in

a shell’s start-up file for command line execution of the scripts. Typically for Bash and C

shell users, type

5

<pkg-install-dir>/pysmo-sac-0.5
<prefix>/lib/python2.7/site-packages
<userbase>/lib/python2.7/site-packages
<pkg-install-dir>/pysmo-aimbat-0.1.1
<pkg-install-dir>/pysmo-aimbat-0.1.1
<prefix>/lib/python2.7/site-packages/pysmo/aimbat
<pkg-install-dir>/pysmo-aimbat-0.1.1/scripts

export PATH=$PATH:<pkg-install-dir>/pysmo-aimbat-0.1.1/scripts

setenv PATH $PATH:<pkg-install-dir>/pysmo-aimbat-0.1.1/scripts

in .bashrc and .cshrc files, respectively.

To test the installation of the pysmo.sac and pysmo.aimbat packages, type

from pysmo import sac

from pysmo import aimbat

in a Python shell.

6

3 Tutorial

3.1 Parameter Configuration

Matplotlib works with six GUI (Graphical User Interface) toolkits: WX, Tk, Qt(4), GTK,

Fltk and macosx (http://matplotlib.org/contents.html). The GUI of AIMBAT utilizes

GUI neutral widgets and GUI neutral event handling API (Application Programming In-

terface) to support interactive plotting (http://matplotlib.org/api/widgets_api.html,

http://matplotlib.org/users/event_handling.html). Examples given in this manual

are using the default toolkit Tk and backend TkAgg. See http://matplotlib.org/faq/

usage_faq.html#what-is-a-backend and http://matplotlib.org/users/customizing.

html#customizing-matplotlib for explanation of the backend and how to customize it. In

short, put the following line in your matplotlibrc file:

backend : TkAgg #Agg rendering to a Tk canvas

Other parameters for the package can be set up by a configuration file ttdefaults.conf,

which is interpreted by the module ConfigParser. This configuration file is searched in the

following order:

(1) file ttdefaults.conf in the current working directory

(2) file .aimbat/ttdefaults.conf in your HOME directory

(3) a file specified by environment variable TTCONFIG

(4) file ttdefaults.conf in the directory where AIMBAT is installed

An example of the ttdefaults.conf file and its explanations are given in Table 1.

Python scripts in the <pkg-install-dir>/pysmo-aimbat-0.1.1/scripts can be executed

from the command line. The command line arguments are parsed by the optparse module

to improve the scripts’ flexibility. If conflicts existed, the command line options override the

default parameters given in the configuration file ttdefaults.conf. Run the scripts with

the ”-h” option for the usage messages.

7

http://matplotlib.org/contents.html
http://matplotlib.org/api/widgets_api.html
http://matplotlib.org/users/event_handling.html
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend
http://matplotlib.org/users/customizing.html#customizing-matplotlib
http://matplotlib.org/users/customizing.html#customizing-matplotlib

File ttdefaults.conf Description

[sacplot]
colorwave = blue Color of waveform
colorwavedel = gray Color of waveform which is deselected
colortwfill = green Color of time window fill
colortwsele = red Color of time window selection
alphatwfill = 0.2 Transparency of time window fill
alphatwsele = 0.6 Transparency of time window selection
npick = 6 Number of time picks (plot picks: t0-t5)
pickcolors = kmrcgyb Colors of time picks
pickstyles = – : Line styles of time picks (use second one if ran out of color)
figsize = 8 10 Figure size for plotphase.py

rectseis = 0.1 0.06 0.76 0.9 Axes rectangle size within the figure
minspan = 5 Minimum sample points for SpanSelector to select time window
srate = -1 Sample rate for loading SAC data. Read from first file if srate < 0

[sachdrs]
twhdrs = user8 user9 SAC headers for time window beginning and ending
ichdrs = t0 t1 t2 SAC headers for ICCS time picks
mchdrs = t2 t3 SAC headers for MCCC input and output time picks
hdrsel = kuser0 SAC header for seismogram selection status
qfactors = ccc snr coh Quality factors: cross-correlation coefficient, signal-to-noise ratio, time domain coherence
qheaders = user0 user1 user2 SAC Headers for quality factors
qweights = 0.3333 0.3333 0.3333 Weights for quality factors

[iccs]
srate = -1 Sample rate for loading SAC data. Read from first file if srate < 0
xcorr modu = xcorrf90 Module for calculating cross-correlation: xcorr for Numpy or xcorrf90 for Fortran
xcorr func = xcorr fast Function for calculating cross-correlation
shift = 10 Sample shift for running coarse cross-correlation
maxiter = 10 Maximum number of iteration
convepsi = 0.001 Convergence criterion: epsilon
convtype = coef Type of convergence criterion: coef for correlation coefficient, or resi for residual
stackwgt = coef Weight each trace when calculating array stack
fstack = fstack.sac SAC file name for the array stack

[mccc]
srate = -1 Sample rate for loading SAC data. Read from first file if srate < 0
ofilename = mc Output file name of MCCC. Use ”$evdate.mc$phase” if mc
xcorr modu = xcorrf90 Module for calculating cross-correlation: xcorr for Numpy or xcorrf90 for Fortran
xcorr func = xcorr faster Function for calculating cross-correlation
shift = 10 Sample shift for running coarse cross-correlation
extraweight = 1000. Weight for the zero-mean equation in MCCC weighted lsqr solution
lsqr = nowe Type of lsqr solution: no weight
#lsqr = lnco Type of lsqr solution: weighted by correlation coefficient, solved by lapack
#lsqr = lnre Type of lsqr solution: weighted by residual, solved by lapack
rcfile = .mcccrc Configuration file for MCCC parameters (deprecated)
evlist = event.list File for event hypocenter and origin time (deprecated)

[signal]
tapertype = hanning Taper type
taperwidth = 0.1 Taper width

Table 1: Example of AIMBAT configuration file ttdefaults.conf.

3.2 SAC Data Access

3.2.1 Python Object for SAC Files

The pysmo.sac package is developed to read and write individual SAC files. The Python

class sacfile of module sacio opens a SAC file and returns an object including data and all

8

SAC header variables as its attributes. Modifications of object attributes are saved to file.

It is written purely in Python so that it also runs with Jython (http://www.jython.org).

The <pkg-install-dir>/pysmo-aimbat-0.1.1/scripts/egsac.py script (Figure 1) gives

a simple example to read, resample and plot a seismogram using pysmo, Scipy and Mat-

plotlib. You can type the codes in a Python/iPython shell, or run as a script in the directory

<pkg-install-dir>/pysmo-aimbat-0.1.1/example/Event_2011.09.15.19.31.04.080 (re-

ferred to as <example-event-dir> hereafter).

Figure 1: The <pkg-install-dir>/pysmo-aimbat-0.1.1/scripts/egsac.py script
which produces Figure 2.

9

http://www.jython.org
<pkg-install-dir>/pysmo-aimbat-0.1.1/scripts/egsac.py
<pkg-install-dir>/pysmo-aimbat-0.1.1/example/Event_2011.09.15.19.31.04.080
<example-event-dir>

In this example, a SAC file named TA.109C. .BHZ.sac is read in as a sacfile object. The

time array is calculated from SAC headers. The data array is resampled from interval 0.025

to 2.0 seconds using Scipy’s signal processing module. Result is displayed in Figure 2.

Add the following codes to write the resampled seismogram to file TA.109C. .BHZ.sac:

sacobj.delta = deltanew

sacobj.npts = nptsnew

sacobj.data = y2

600 650 700 750 800 850 900
Time [s]

1.0

0.5

0.0

0.5

1.0

1.5

1e 5

TA.109C.__.BHZ.sacDelta = 0.025 s
Delta = 2.000 s

Figure 2: Example of reading, resampling and plotting a SAC file.

3.2.2 Python Pickle for SAC Files

The pysmo.sacio module converts SAC files to sacfile objects. Any modification of the ob-

jects are instantly written to files. In data processing, the user may want to abandon changes

made earlier, which brings the need of a buffer for the sacfile objects. The SacDataHdrs

class in the pysmo.aimbat.sacpickle module is written on top of pysmo.sacio to serves

this purpose by reading a SAC file and returning a sacdh object that is very similar of the

sacfile object. Essentially, the sacdh object is a copy of the the sacfile object in the

memory, except that SAC headers ’t0-t9’, ’user0-user9’, ’kuser0-kuser2’ are saved in three

Python lists. A gsac object of the SacGroup class consists of a group of sacdh objects from

event-based SAC data files, earthquake hypocenter information and station locations. An

additional step is required to save changes in the gsac object to files.

In order to avoid frequent SAC file I/O, the pickle/cPickle module is used for serializing

and de-serializing the gsac object structure. Thus the data processing efficiency is improved

10

because reading and writing of SAC files are done only once each before and after data

processing. Script sac2pkl.py does the conversions between SAC files and Python pickles.

Its usage message can be printed out by running ”sac2pkl.py -h” at command line and

the result is displayed in Figure 3. For example, in the data example directory <example-

event-dir>, run

sac2pkl.py -s *Z -o 20110915.19310408.bhz.pkl -d 0.025

to read 163 vertical component seismograms at a sample interval of 0.025 s and convert to

a gsac object which is saved in the pickle file 20110915.19310408.bhz.pkl.

To save disk space, compressed pickle files in gz and bz2 formats can be generated by:

sac2pkl.py -s *Z -o 20110915.19310408.bhz.pkl -d 0.025 -z gz

sac2pkl.py -s *Z -o 20110915.19310408.bhz.pkl -d 0.025 -z bz2

at the cost of more CPU time.

After processing, run

sac2pkl.py 20110915.19310408.bhz.pkl -p

to convert the pickle file to SAC files.

Figure 3: Help message of the sac2pkl.py script.

See the doc string of pysmo.aimbat.sacpickle (type ”from pysmo.aimbat import sacpickle;

print sacpickle. doc ” in a Python shell) and http://docs.python.org/library/

pickle.html for more information about the Python data structure, pickling and unpickling.

11

<example-event-dir>
<example-event-dir>
http://docs.python.org/library/pickle.html
http://docs.python.org/library/pickle.html

3.3 SAC Plotting and Phase Picking

SAC plotting and phase picking functionalities are replicated and enhanced based on the

GUI neutral widgets (such as Button and SpanSelector) and the event (keyboard and

mouse events such as key press event and mouse motion event) handling API of Mat-

plotlib (Hunter , 2007). They are implemented in two modules pysmo.aimbat.plotphase

and pysmo.aimbat.pickphase, which are used by corresponding scripts sacplot.py and

sacppk.py executable at command line. Their help messages are displayed in Figures 4 and

5.

Figure 4: Help message of the sacplot.py script.

12

Figure 5: Help message of the sacppk.py script.

3.3.1 SAC Plotting

Options ”-i, -z, -d, -a, and -b” of sacplot.py set the seismogram plotting baseline as file

index, zero, epicentral distance in degrees, azimuth, and back-azimuth, respectively. The

user can run sacplot.py directly with the options, or run individual scripts sacp1.py,

sacp2.py, sacprs.py, sacpaz.py, and sacpbaz.py which preset the baseline options and

plot seismograms in SAC p1 style, p2 style, record section, and relative to azimuth and

back-azimuth. The following commands are equivalent:

sacplot.py -i ⇐⇒ sacp1.py

13

sacplot.py -z ⇐⇒ sacp2.py

sacplot.py -d ⇐⇒ sacprs.py

sacplot.py -a ⇐⇒ sacpaz.py

sacplot.py -b ⇐⇒ sacpbaz.py

Figure 6: The <pkg-install-dir>/pysmo-aimbat-0.1.1/scripts/egplot.py script
which produces Figure 7.

14

Figure 7: Example of plotting multiple SAC files in (A) record section; (B) SAC p1 style;
and (C) SAC p2 style. This figure is the random-color version of Figure 1 in Lou et al.
(2012).

15

Input data files need to be supplied to the scripts in the form of either a list of SAC files

or a pickle file which includes multiple SAC files. For example, a ”bhz.pkl” file is generated

from 22 vertical component seismograms ”TA.[1-K]*Z” by running:

sac2pkl.py TA.[1-K]*BHZ -o bhz.pkl -d0.025

in the data example directory <example-event-dir>. Then the two commands are equiva-

lent:

sacp1.py TA.[1-K]*Z ⇐⇒ sacp1.py bhz.pkl

For large number of seismograms, the pickle file is suggested because of faster loading.

Besides using the standard sacplot.py script, the user can modify its getAxes function in

your own script to customize figure size and axes attributes. Script egplot.py (Figure 6) is

such an example in which SAC p1, p2 styles and record section plotting are drawn in three

axes in the same figure canvas. Run

egplot.py TA.[1-K]*Z -f1 -C

at command line to produce Figure 7. The ”-C” option uses random color for each seismo-

gram. The ”-f1” option fills the positive signals of waveform with less transparency. In the

script, ”opts.ynorm” sets the waveform normalization and ”opts.reltime=0” sets the time

axis relative to time pick t0.

An improvement over SAC is that the program outputs the filename when the seismogram is

clicked on by the mouse. This is enabled by the event handling API and is mostly introduced

for use in SAC p2 style plotting when seismograms are plotted on top of each other. It is

especially useful when a large number of seismograms create difficulties in labeling.

Another improvement is easier window zooming enabled by the SpanSelector widget and

the event handling API. Select a time span by mouse clicking and dragging to zoom in a

waveform section. Press the ’z’ key to zoom out to the previous time range.

3.3.2 SAC Phase Picking

SAC plotting (pysmo.aimbat.plotphase) does not involve change in data files but phase

picking (pysmo.aimbat.pickphase) does. A GUI is built for user to interactively pick phase

arrival times. Figure 8 is an example screen shot running

16

<example-event-dir>

sacppk.py 20110915.19310408.bhz.pkl -w

in the data example directory <example-event-dir>.

Figure 8: Screen shot of running ”sacppk.py 20110915.19310408.bhz.pkl -w”. First 25
out 162 selected seismograms and 1 deleted seismogram are plotted on the first page. Click
the Prev and Next Buttons to navigate through the total 6 pages.

Following SAC convention, the user can set a time pick by pressing the ’t’ key and number

keys ’0-9’. The x location of the mouse position is saved to corresponding SAC head-

ers ’t0-t9’. Time window zooming in pysmo.aimbat.pickphase is implemented in the

same way as in pysmo.aimbat.plotphase to replace SAC’s combination of the ’x’ key and

mouse click. Zooming out key is set to ’z’ because the ’o’ key is used for another pur-

pose by Matplotlib. The filename printing out by mouse clicking feature is also available in

pysmo.aimbat.pickphase.

17

<example-event-dir>

A major improvement over SAC is picking a time window in addition to time picks. Pressing

the ’w’ key to save the current time axis range to two user-defined SAC header variables. A

transparent green span is plotted within the time window (Figure 8).

Another major improvement involves quality control with convenient operations to (de)select

seismograms. In the GUI in Figure 8, there are two divisions of selected and deleted seismo-

grams. Selected seismograms with a positive trace number are displayed with blue wiggles,

while deleted seismograms with negative trace numbers are plotted in gray. The user can

simply click on a certain seismogram to switch the selection status, either to exclude it or

bring it back for inclusion. The trace selection status is stored in a user-defined SAC header

variable.

In SAC, command ”ppk p 10” plots 10 seismograms on each page. Pressing the ’b’ and

’n’ keys to navigate through pages. The number of seismograms plotted on each page is

controlled by command line option ”-m maxsel maxdel” for sacppk.py. The Prev and Next

Buttons are for page navigation and the Save Button saves the change in time picks and

time window to files. The default values for maxsel and maxdel are 25 and 5, which means

a maximum of 30 seismograms on each page. In Figure 8, there are 26 seismograms on

the first page because only 1 seismogram is deleted. On next page, there are 30 selected

seismograms. To plot 50 seismograms on each page, run

sacppk.py 20110915.19310408.bhz.pkl -w -m 45 5

and there would be 4 total pages and 13 seismograms on the last page.

To plot seismograms relative to time pick t0 and fill the positive and negative wiggles of

waveform, run

sacppk.py 20110915.19310408.bhz.pkl -w -r0 -f1

To sort seismograms by epicentral distance in increase and decrease orders, run

sacppk.py 20110915.19310408.bhz.pkl -w -sdist

sacppk.py 20110915.19310408.bhz.pkl -w -sdist-

Sorting by azimuth and back-azimuth is similar:

sacppk.py 20110915.19310408.bhz.pkl -w -saz

sacppk.py 20110915.19310408.bhz.pkl -w -sbaz

18

3.4 Measuring Teleseismic Body Wave Arrival Times

The core idea in using AIMBAT to measure teleseismic body wave arrival times has two

parts: automated phase alignment and interactive quality control. The first part reduces

user processing time and the second part retains valuable user inputs.

3.4.1 Automated Phase Alignment

The ICCS algorithm calculates an array stack from predicted time picks, cross-correlates

each seismogram with the array stack to find the time lags at maximum cross-correlation,

then use the new time picks to update the array stack in an iterative process. The MCCC

algorithm cross-correlates each possible pair of seismograms and uses a least-squares method

to calculate an optimized set of relative arrival times. Our method is to combine ICCS and

Figure 9: Help message of the iccs.py script.

19

MCCC in a four-step procedure using four anchoring time picks 0Ti, 1Ti, 2Ti, and 3Ti:

(a) Coarse alignment by ICCS

(b) Pick phase arrival at the array stack

(c) Refined alignment by ICCS

(d) Final alignment by MCCC

The input and output time picks for the steps (a), (c) and (d) and their corresponding SAC

headers are listed in Table 2. The one-time manual phase picking at the array stack in

step (b) allows the measurement of absolute arrival times. The detailed methodology and

procedure can be found in Lou et al. (2012).

Figure 10: Help message of the mccc.py script.

20

Step Algorithm
Input Output

Time Window Time Pick Time Header Time Pick Time Header

(a) ICCS Wa 0Ti T0 1Ti T1
(c) ICCS Wb 2T ′

i T2 2Ti T2
(d) MCCC Wb 2Ti T2 3Ti T3

Table 2: Time picks and their SAC headers used in the procedure for measuring teleseismic
body wave arrival times.

The ICCS and MCCC algorithms are implemented in two modules pysmo.aimbat.algiccs

and pysmo.aimbat.algmccc, and can be executed in scripts iccs.py and mccc.py, respec-

tively. Usages are displayed in Figures 9 and 10.

3.4.2 Interactive Quality Control and Graphical User Interface

In practical data processing, there is a constant need of seismogram quality control, which

is mixed with the procedure described above. ICCS steps (a), (b), and (c) are likely to be

applied multiple times after removing low quality seismograms. To facilitate quality con-

trol, ICCS calculates three quality factors for each seismogram: cross-correlation coefficient

(CCC), signal-to-noise ratio (SNR), and time domain coherence (COH). The ”-a” and ”-

A” modes of iccs.py can remove seismograms with low qualities and rerun ICCS until all

seismograms meet the minimum requirements specified by the ”-q” option.

A GUI is also designed to run both ICCS and MCCC and perform interactive quality con-

trol. It is implemented in module pysmo.aimbat.qualctrl and script ttpick.py based on

pysmo.aimbat.pickphase and four Buttons for the four-step procedure. The quality control

operation is the same as sacppk.py. The user can interactively switch the selection status

of a seismogram by mouse clicking on the waveform. In order to efficiently delete low quality

seismograms, different attributes listed below are used as sorting criteria:

• -s 0: sort by user-defined weighted-average of CCC, SNR and COH

• -s 1: sort by CCC

• -s 2: sort by SNR

• -s 3: sort by COH

• -s t: sort by time pick difference

• -s az: sort by azimuth

21

• -s baz: sort by back-azimuth

• -s dist: sort by epicentral distance

Other SAC headers also work with the ”-s” option. Default sorting order is increase. Append

”-” to make it decrease order, such as ”-s t-”. Sorting by time pick difference (2Ti − 0Ti) in

both increase and decrease orders are useful in detecting cycle-skipping.

Figure 11: Help message of the ttpick.py script.

22

To start the GUI, run

ttpick.py 20110915.19310408.bhz.pkl -t -10 10 -s1

in the data example directory <example-event-dir> and the screen shot is displayed in

Figure 12. The ”-t -10 10” option specifies an initial time window of (-10,10) seconds around

the initial time pick to run ICCS. More screen shots along the data processing workflow are

shown in Figures 13-16. See the captions for commands and descriptions.

Figure 12: Screen shot of data processing initiated by running command "ttpick.py

20110915.19310408.bhz.pkl -t -10 10 -s1 -x -30 30". Initial time window Wa =
(−10, 10) s. The ”-x -30 30” option sets the time axis range to be (-30, 30) s. Seismo-
grams are sorted by CCC.

23

<example-event-dir>

Figure 13: (A) Delete station UW.WOOD and rerun ICCS step (a) by clicking the ICCS-A

Button. (B) Pick phase emergence on the array stack for measuring absolute arrival times.
Choose a smaller time window Wb = (−2.7, 2.9) s for refined alignment. Click the Sync

Button to get 2T
′
i and time window for each seismogram.

Figure 14: (A) Run ICCS step (c) by clicking the ICCS-B Button. Relative
time pick is changed from T1 to T2. (B) Quit GUI and restart with "ttpick.py

20110915.19310408.bhz.pkl -x -20 20 -r2 -s0" which sorts seismograms by weighted-
average of three quality factors.

24

Figure 15: (A) Sort seismograms by time pick difference in increase order
by running "ttpick.py 20110915.19310408.bhz.pkl -x -10 10 -r2 -st". (B) Sort
seismograms by time pick difference in decrease order by running "ttpick.py

20110915.19310408.bhz.pkl -x -10 10 -r2 -st-"

Figure 16: (A) Run MCCC by clicking the MCCC Button. Relative time pick is changed
from T2 to T3. (B) Sort seismograms by time pick difference in decrease order by running
"ttpick.py 20110915.19310408.bhz.pkl -x -10 10 -r3 -sdist".

25

4 Appendix

A List of Files and Directories in the Packages

pysmo.sac:

setup.py

src/pysmo/sac

sacio.py

sacfunc.py

sacmeth.py

pysmo.aimbat:

setup.py

src/pysmo/aimbat

algiccs.py

algmccc.py

pickphase.py

plotphase.py

plotutils.py

qualctrl.py

qualsort.py

sacpickle.py

ttconfig.py

ttdefaults.conf

xcorr.py

xcorrf.90

xcorrf90.so

scripts/

egalign1.py

egalign2.py

egplot.py

egsac.py

iccs.py

mccc.py

sac2pkl.py

sacp1.py

sacp2.py

sacpaz.py

sacpbaz.py

sacplot.py

sacppk.py

sacprs.py

ttpick.py

example/Event 2011.09.15.19.31.04.08/

26

References

Goldstein, P., D. Dodge, M. Firpo, and L. Minner (2003), SAC2000: Signal processing and

analysis tools for seismologists and engineers, International Geophysics, 81, 1613–1614.

Hunter, J. (2007), Matplotlib: A 2D Graphics Environment, Computing in Science & Engi-

neering, 3 (9), 90–95.

Lou, X., S. van der Lee, and S. Lloyd (2012), A Python/Matplotlib Tool for Measuring

Teleseismic Body Wave Arrival Times, Seismological Research Letters, in revision.

VanDecar, J. C., and R. S. Crosson (1990), Determination of teleseismic relative phase arrival

times using multi-channel cross-correlation and least squares, Bulletin of the Seismological

Society of America, 80 (1), 150–169.

27

	Introduction
	Installation
	Install Dependencies
	Mac
	Linux

	Install pysmo.sac and pysmo.aimbat
	Install pysmo.sac
	Install pysmo.aimbat

	Tutorial
	Parameter Configuration
	SAC Data Access
	Python Object for SAC Files
	Python Pickle for SAC Files

	SAC Plotting and Phase Picking
	SAC Plotting
	SAC Phase Picking

	Measuring Teleseismic Body Wave Arrival Times
	Automated Phase Alignment
	Interactive Quality Control and Graphical User Interface

	Appendix
	List of Files and Directories in the Packages

