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ABSTRACT: Accurate characterization of emissions is essential
for understanding spatiotemporal variations of air pollutants and
their societal impacts, including population exposure, health
outcomes, and environmental justice implications. Characterizing
emissions from the transportation sector is challenging due to
uncertainties in emission-producing processes and in fleet
composition and activity−factors that lead to differences across
modeled vehicle emissions data sets. Here, we compare four data
sets�Fuel-Inventory Vehicle Emissions, Neighborhood Emission
Mapping Operation, Lake Michigan Air Director Consortium-
Northwestern University, and University of Vermont�over the
Greater Chicago region at three shared spatial resolutions (1.0, 1.3,
and 4 km2). While domain-level data set agreement is strongest at
the coarsest resolution, at finer resolutions we find notable inconsistencies, particularly at local scales. At 1 km2, simulated domain
total NOx emissions across the four data sets differ up to 82% (∼32−58 k tons/year), while grid cell maximum PM2.5 emissions vary
up to 272% (∼1.5−5.5 tons/km2/year). Intercompared emissions data sets share similar inputs; however, divergent outcomes arise
from differences in emission factors, simulated vehicle processes, and characterization of traffic data. While domain-level emission
burdens among racial/ethnic subgroups are generally ranked similarly across data sets, the magnitude of relative disparities can vary
up to 11%−a potentially consequential factor to consider in downstream impact analyses.
KEYWORDS: vehicle emissions, emission modeling, fine particulate matter, nitrogen oxides, equity, distributional impacts

1. INTRODUCTION
In the U.S., on-road vehicle emissions, including tailpipe
exhaust, evaporative vapors from refueling and leaks, and
nonexhaust sources such as brake, clutch, tire, and road wear,
contribute ∼23% of total greenhouse gas emissions, ∼29% of
nitrogen oxide (NOx; NO + NO2) emissions, and ∼1.3% of
primary fine particulate matter (PM2.5) emissions.

1,2 Exposure
to pollutants associated with vehicle emissions has been linked
with numerous adverse health outcomes.3−10 Nearly a quarter
of the U.S. population−primarily nonwhite and low-income−
resides near heavily trafficked roadways (i.e., within 500 m of
roads with more than 25,000 vehicles passing daily); a
proportion that has increased nearly 5 percentage points
over the past decade.11,12 Consequently, nonwhite and low-
income populations are disproportionately impacted by traffic-
related pollution.13−15

Efforts to assess vehicle emission impacts rely heavily on
modeled vehicle emissions data sets. However, accurately
characterizing vehicle emissions is challenging as models must
account for numerous vehicle processes as well as dynamic
fleet compositions and activities.16,17 This complexity requires

vehicle emission modelers to make assumptions and choices
regarding model processes and input data which introduces
uncertainties to simulated products. As such, it is crucial to
characterize similarities and differences among simulated
vehicle emission data sets, as these data sets are foundational
inputs for estimating air pollution concentrations, which in
turn inform assessments of population exposure and public
health outcomes. Variations in vehicle emission modeling
approaches introduce uncertainties that can propagate through
air quality models,18 and as these models advance to finer, and
more equity-relevant spatial resolutions (i.e., ∼1 km),19,20 data
set differences could lead to divergent environmental equity
findings.
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With greater understanding of vehicle processes and
advances in traffic data collection, computational resources,
and modeling frameworks, the sophistication and spatiotem-
poral resolution of vehicle emission models has increased.21

Among the most comprehensive vehicle emissions models is
the U.S. EPA motor vehicle emission simulator (MOVES),
which simulates on- and off-road emissions for 13 distinct
vehicle classes, 6 road types, and 6 fuel types at the national-
level, county-level, or along individual roadways.22 The
granularity of MOVES allows for detailed characterization of
vehicle emission sources, albeit at a high computational cost
when used to evaluate roadway-level impacts. Alternatively,
MOVES can be used in reduced-complexity emission modeling
frameworks, such as that from the University of Vermont
(UVM) where emission factors (EFs) are aggregated by fewer
vehicle classes and omit some vehicle processes for computa-
tional efficiency, enabling the simulation of emissions along
individual roadways across broader spatial domains.
Modeled vehicle emission data sets rely on EFs empirically

derived from observations. EFs quantify the mass of a pollutant
emitted per distance or time for specific vehicle processes,23

such as tailpipe exhaust, evaporative emissions, brake and tire
wear, cold starts, and idling. EFs vary based on attributes such
as vehicle age, engine load, speed, acceleration, road grade, and
meteorology (ambient temperature, humidity).17,24 EFs vary
across different driving conditions within the same vehicle
class. As such, EFs developed for emissions modeling aggregate
and average across observations. An alternative EF develop-
ment method uses fuel-sales records, i.e., fuel consumption, to
normalize EFs for use in fuel-based emission models (e.g., the
Fuel-Inventory Vehicle Emissions model), which express EFs
per unit of fuel consumed rather than per distance traveled.25

Regardless of method, EFs change over time as emission
control technologies advance, necessitating regular updates to
emission modeling frameworks.
Vehicle emission models also need detailed traffic activity

data, which characterizes vehicle fleets, traffic conditions, and
traffic volumes on individual roadways. Fleet characteristics
(e.g., model, make, age) are primarily obtained from county-
level vehicle registration data, while traffic conditions, traffic
volume, and vehicle miles traveled (VMT) are supplied by the
U.S. Federal Highway Administration (FHWA) Highway
Statistics and Highway Performance Monitoring System
(HPMS). The FHWA requires states to gather traffic data
for public roads, excluding local or rural minor collector roads,
within a margin of error of 5−10% for major roadways, large
urban cores, and rural interstates,26 but are only obligated to
provide a random sample of medium-duty vehicle (MDV) and
heavy-duty vehicle (HDV) traffic activity on unsampled
roadways. This poses a potential challenge for emission
models, as HDVs are the largest on-road contributor of NOx
emissions, despite comprising just ∼5% of the total population
of on-road vehicles.27,28 Emission models fill such data gaps
using techniques such as population weighting, linear
regression, or machine learning algorithms, introducing the
potential for divergent model outcomes. Overall, an emission
model’s performance is intrinsically linked to the accuracy of
EFs and the representation of traffic activity and vehicle fleet
composition.
Analyzing simulated emissions from diverse modeling

platforms is essential for identifying similarities and differences
between emission data sets and for characterizing uncertainties
in exposure and impact studies. Herein, we compare four

distinct on-road vehicle emission data sets: (1) Fuel-Inventory
Vehicle Emissions (FIVE);14 (2) Neighborhood Emission
Mapping Operation (NEMO);29 (3) Lake Michigan Air
Director Consortium-Northwestern University (LADCO-
NU);30 and (4) University of Vermont (UVM).31 Each data
set offers a unique combination of modeling inputs, enabling a
comprehensive comparison of outputs across methodologies.
We assess the variations among the four data sets over the
Greater Chicago region�a region selected for its intricate
network of nearly 30,000 miles of roads and a demographically
diverse population of approximately 8.5 million residents.32,33

We investigate spatial discrepancies, differences in simulated
vehicle emission magnitudes, and the implications of these
differences for the distribution of vehicle emissions. Our
analysis addresses a critical gap in understanding uncertainties
associated with high spatial resolution on-road vehicle
emission modeling.

2. MATERIALS AND METHODS
In this section, we describe the methodologies and data inputs
used in the FIVE, NEMO, LADCO-NU, and UVM data sets to
simulate primary emissions of NOx and PM2.5 over the Greater
Chicago region. Each data set was developed at a unique native
spatial resolution, ranging from the representation of individual
roads (i.e., link-level) to gridded emissions at a 4 km2

resolution (Supporting Information Table S1). To ensure
spatial uniformity for our comparisons, a first-order flux-
conservative regridding method (Section 2.5) was applied to
each emissions data set. The Greater Chicago region, defined
as Cook, DuPage, Kane, Kendall, Lake, McHenry, and Will
Counties (Figure S1), contains 68.5% of Illinois’ population.33

The region is a major freight hub, with trucks constituting
nearly 1 in 7 vehicles on urban interstates. This high truck
presence is in part due to ∼25% of all U.S. freight trains and
∼50% of intermodal trains passing through the region,34 along
with a high concentration of freight establishments per
capita.35 In the main text, we provide NOx-focused figures,
while equivalent PM2.5 figures are provided in the Supporting
Information.

2.1. NEMO. The George Mason University NEMO29

simulates hourly and annual average vehicle emissions for
the contiguous United States (CONUS) at a resolution of 1
km2 for the year 2017 (Table S1). NEMO data are developed
using the U.S. EPA’s emission modeling system, Sparse Matrix
Operator Kernel Emissions36 (SMOKE), and integrates input
data from the EPA’s 2017 National Emission Inventory (NEI;
version 2017gb)37 which uses county-level vehicle data from
the 2017 FHWA Highway Statistics (Supporting Information
Section S1.1). County-level, hourly, and meteorologically
informed vehicle emissions are generated using
MOVESv2014b EFs, with meteorological variables of temper-
ature and relative humidity estimated by the Weather Research
Forecast (WRF) model.37 NEMO simulates emissions from
vehicle tailpipe exhaust, evaporative processes, cold starts,
brake wear, tire wear, and hotelling.38 Hotelling is a process
unique to long-haul trucks, representing emissions that occur
while drivers take federally mandated breaks in which air
conditioning, heating, or other devices are powered by
prolonged engine idling, auxiliary power units, or alternative
electrical sources.38 To spatially allocate county-level vehicle
emissions to a subcounty, 1 km2 fixed grid, SMOKE uses
spatial surrogates. Spatial surrogates quantify the proportion of
a geographic attribute within a grid cell, relative to a
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corresponding attribute’s distribution across a given county.
NEMO’s modeling framework incorporates average annual
daily traffic (AADT) from the 2016 HPMS, categorized by
restricted and unrestricted road types to spatially distribute
vehicle emissions. This approach allocates county-level
emissions to fixed model grid cells, assigning a higher
proportion of county-level vehicle emissions to road segments
with greater traffic volumes, and ensuring that emissions from
HDV processes are distributed only to roads where HDVs are
present. Hotelling emissions are spatially allocated to grid cells
that contain truck or rest stops. The spatial distribution of cold
start emissions is informed by the National Land Cover Data
set’s (NLCD) “Medium and High Development Intensity” and
“All Development’’.
2.2. LADCO-NU. LADCO-NU simulates hourly vehicle

emissions at 1.3 km2 resolution across a Chicago-centric,
midwestern domain (Table S1). Emissions are generated for
four seasonal months (August and October 2018, January and
April 2019) and hourly emissions have been averaged to derive
an annualized mean. LADCO-NU uses the EPA’s 2016 V239

emission modeling platform, which incorporates MOVESv3
EFs and vehicle activity data from the 2017 NEI (version
2016fj). The 2016fj activity data is developed similarly to that
of NEMO but projected back one year using the 2016 HPMS
Highway Statistics.39 Hourly, gridded meteorological inputs
were developed using WRFv3.8,40 whose performance is
evaluated and outlined in Montgomery et al. (2023).41

MOVESv3 simulates vehicle emissions originating from
tailpipe exhaust, evaporative processes, cold starts, brake
wear, tire wear, hotelling, and off-network idling (ONI)
processes. ONI simulates emissions arising from vehicles idling
off roadways for durations of less than 1 h, such as those
parked in driveways, waiting in pick-up lines, or loading and
unloading freight. LADCO-NU incorporates spatial surrogates
generated by the LADCO, which spatially distributes on-road
vehicle emissions using 2013 HPMS data. Emissions for cold
starts and hoteling use similar spatial surrogates as NEMO.
ONI, however, is spatially distributed to subcounty grid cells
using “Medium and High Development Intensity” attributes
from the NLCD.
2.3. UVM. UVM includes CONUS-wide annual average on-

road vehicle emissions at a link-level resolution for 2018
(Table S1). UVM integrates county-level monthly average
temperature and humidity for January and July, MOVES fuel
regions, and vehicle inspection programs, resulting in 444
unique combinations. Representative counties are selected
from each combination based on population size to capture
varying urbanization levels. Emissions modeling is performed
using MOVESv3 for 701 county−month combinations,
encompassing 479 counties and representing 15.2% of U.S.
counties. Annual average vehicle EFs (i.e., the annual average
emissions produced per vehicle per unit of distance traveled)
for on-road running rate emissions (i.e., tailpipe exhaust,
evaporative emissions, brake, and tire wear) are calculated for
each road type and source (vehicle) type. EFs are classified
using MOVES road types with FHWA roadway functional
classifications, allowing for their association with road links in
the HPMS. EFs are aggregated by light-duty vehicles (LDV),
MDVs, and HDVs, following MOVES vehicle definitions
derived from HPMS vehicle types. Counties not modeled in
MOVES are assigned EFs corresponding to their specific
model parameters.31 To estimate traffic volumes for MDVs
and HDVs where FHWA does not provide AADT estimates,

UVM developed a random forest regression model that was
trained on links with available data using several predictors
(i.e., total roadway segment AADT, functional classification,
lane count, state and county indicators) to estimate the missing
MDV and HDV traffic volume estimates. County-specific EFs
are then applied to the augmented 2018 HPMS traffic data to
calculate annual average daily emissions for NOx and PM2.5 for
each roadway link.

2.4. FIVE. FIVE includes CONUS-wide hourly vehicle
emissions, which are aggregated to represent weekday and
weekend emissions for each month at 4 km2 resolution for
2018 (Table S1). FIVE EFs, unlike the previous three data sets,
use fuel-based EFs which have been derived from tunnel and
near-road remote sensing studies for LDV (<or equal to 8500
lbs.) and HDV (>8500 lbs.) for winter and summer.16,17,42,43

Brake wear, tire wear, and cold start EFs are provided by the
U.S. EPA’s MOVESv2014a. FIVE simulates vehicle emissions
from tailpipe exhaust, evaporative processes, and cold starts
(gasoline vehicles only). The 2018 Highway Statistics taxable
fuel sales are then used to scale EFs, assuming gasoline and
diesel consumption patterns for LDV and HDV, respectively.17

Traffic activity data from the 2018 HPMS and fleet
composition is used to spatially distribute on-road emissions
for 82% and 71% LDV and HDV, respectively, to individual
roadways based on available data. Emissions for traffic activity
not available from the HPMS, such as that on local residential
roads and minor collectors, are spatially allocated using
population density.44

2.5. Regridding. With the exception of UVM, the
emissions data sets are regridded to three common resolutions
(1.0, 1.3, and 4 km2) using first-order flux-conservation45 from
the xESMF python package46 (Supporting Information Section
S1.2). Conservative regridding is not performed on the UVM
data set as it is provided at link-level. As such, we aggregate
link-level data to the three compared grid resolutions
(Supporting Information Section S1.3). We present 1.0 km2

comparisons in the results, while 1.3 and 4 km2 analyses are
provided in the Supporting Information (Figures S11−S22).

3. RESULTS
3.1. Simulated Vehicle Emissions of NOx. Our analysis

highlights similarities and differences in simulated NOx
emissions (Figure 1). All data sets indicate the highest
emissions (>40.00 tons/km2/year) along major highways,
particularly I-90, I-290, and I-294. Elevated emissions are also
consistently found in downtown Chicago’s “Loop” area, where
six major highways (I-55, I-57, I-90, I-94, I-290, and I-294)
converge. Beyond downtown, heightened emissions are
observed along I-294 west of the city. Suburban (Lake,
DuPage, Will Counties) and rural (McHenry, Kendall
Counties) areas exhibit lower emissions (<2.00 tons/km2/
year).
Notable differences exist, with FIVE and UVM simulating

higher NOx emissions (30.00−85.43 tons/km2/year) along I-
294 southwest and south of Chicago, while NEMO, LADCO-
NU, and UVM model higher emissions (>50.00 tons/km2/
year) in Lake County (Figure 1). LADCO-NU and UVM also
show higher emissions (>40.00 tons/km2/year) along I-55 in
Will County and I-80 near Joliet, whereas FIVE and NEMO
simulate lower emissions (<25.00 tons/km2/year) in these
areas. Maximum localized emissions range from 43.36 tons/
km2/year (FIVE) to 188.90 tons/km2/year (NEMO), with
localized hotspots in NEMO and LADCO-NU corresponding
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to hoteling activity from truck stops and rest areas. Grid cells
containing hotelling activity contribute approximately 4.9%
(∼1570 tons/year) and 2.2% (∼800 tons/year) to the total
NOx emissions for NEMO and LADCO-NU, respectively. The
total sum of simulated emissions ranges from 31,918.90 to
58,018.00 tons/year, with FIVE emissions 1.5 times higher
than the other data sets�a pattern also observed in the 1.3
and 4 km2 intercomparisons (Figures S11 and S17).
We calculate Pearson correlation coefficients to assess the

degree of similarity/difference between simulated NOx
emissions and find a strong correlation between MOVES-
based models: NEMO and UVM (r = 0.79), LADCO-NU and
NEMO (r = 0.72), LADCO-NU and UVM (r = 0.73) (Figure
S2). The weakest correlation is between FIVE and NEMO (r =
0.53), in part due to the conservative regridding method,
which subdivides FIVE’s native grid cells into 16 smaller cells
with similar values, resulting in clusters of points with similar
emission magnitudes (see Supporting Information Section
S1.2). When comparing data sets at coarser resolutions, the
similarity increases. For example, at 4 km2, correlation between
FIVE and NEMO increases to r = 0.92 (Figure S17).

Our evaluation of each data set’s distribution shows that
median simulated NOx emissions range from 0.78 to 2.85
tons/km2/year (Figure S3). The highest emissions occur along
major roadways, which represent a small subset of the study
area, resulting in a positively skewed distribution, with 95th
percentiles ranging from 12.75 to 19.09 tons/km2/year.
Simulated NOx emissions from NEMO, LADCO-NU, and
UVM show similar distributions, with means of 2.95, 3.36, and
3.48 tons/km2/year, and medians of 0.92, 1.25, and 0.78 tons/
km2/year, respectively. FIVE exhibits the highest magnitude of
simulated emissions, with a mean of 5.35, median of 2.85, and
a 95th percentile of 19.08 tons/km2/year. FIVE also exhibits
the greatest variability with an interquartile range of 0.64−7.83
tons/km2/year.
To highlight differences between data sets and identify data

set anomalies, we subtract each individual data set from the
mean of the four data sets (Figure 2). NEMO generally
simulates lower emissions (−0.04−5.25 tons/km2/year) across
most of the study domain, except along highways, grid cells
containing hotelling activity, and along Lake Shore Drive,
where emissions exceed the four-data set mean by up to 112.30

Figure 1. Simulated NOx emissions from (a) FIVE, (b) NEMO, (c) LADCO-NU, and (d) UVM at 1 km2 spatial resolution shown over the
Greater Chicago region including Cook, DuPage, Kane, Kendall, Lake, McHenry, and Will counties. Insets are centered on the “Loop”, and
segments of I-294 west, and south of downtown Chicago. “Max NOx” refers to the maximum grid cell value (tons/km2/year) within the domain,
while “Total NOx” refers to the sum of gridded emissions (tons/year) over the entire study domain. The corresponding figure for PM2.5 emissions
is S4.
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tons/km2/year higher. This aligns with a recent study that
found NEMO overestimated emissions relative to satellite NO2
observations along Lake Shore Drive.47 FIVE simulates higher
NOx emissions (up to 27.29 tons/km2/year) across most of
the Greater Chicago region, except for along interstates where
emissions are up to −5.29 tons/km2/year below the mean,
driven in part by the conservative regridding process and
FIVE’s native resolution. Differences from the mean for
MOVES-based (i.e., NEMO, LADCO-NU, UVM) data sets
occur predominantly along interstates, where UVM simulates
higher emissions along southwestern and southern portions of
I-294 and LADCO-NU simulates higher emissions along
interstates in Will and Lake counties, as well as within the
Loop.
3.2. Simulated Vehicle Emission of PM2.5. Our analysis

reveals variations in the magnitude and spatial distribution of
simulated PM2.5 emissions among the four data sets (Figure
S4). All data sets show similar spatial patterns, with the highest
PM2.5 emissions (>1.50 tons/km2/year) along interstates like
I-90, I-290, and I-294, and near the Loop. Within the Loop,
FIVE, NEMO, and LADCO-NU simulate the highest PM2.5
emissions: 1.48, 5.52, and 4.36 tons/km2/year, respectively.
Suburban and rural areas (Kane, Kendall, McHenry, Will
Counties) consistently exhibit lower emissions (<0.15 tons/

km2/year). While FIVE, NEMO, and LADCO-NU simulate
maximum emissions near the Loop, UVM simulates a localized
maximum of 2.33 tons/km2/year along I-294 south of Chicago
(Figure S4). NEMO uniquely simulates higher emissions along
interstates and highways (up to 3.00 tons/km2/year), as well as
along Lake Shore Drive (up to 5.52 tons/km2/year). Localized
hotspots associated with hotelling activity are discernible in
both NEMO and LADCO-NU due to the presence of truck
and rest stops along interstates. The sum of PM2.5 emissions
within the domain ranges from 1.213.30−1.996.40 tons/year,
with UVM total emissions 44% lower (540 tons/year) than
that of the next lowest data set, LADCO-NU (1756.2 tons/
year). Differences in NOx and PM2.5 estimates among the four
data sets are discussed in detail in Section 4.
In considering the similarities/differences between data sets,

Pearson correlation coefficients show NEMO and UVM have
the strongest correlation (r = 0.84), with NEMO presenting a
high bias in one-to-one plots (Figure S5). NEMO and UVM
also show a strong agreement with the LADCO-NU data set,
with correlation coefficients of 0.76 and 0.74, respectively. The
data sets with the weakest correlation are FIVE and NEMO (r
= 0.56), partly due to our conservative regridding methods.
Correlation coefficients improve at coarser resolutions, for
example, correlation of FIVE and NEMO increases to r = 0.90

Figure 2. Spatial distribution of simulated NOx emission differences from the four-data set mean (data set minus mean) across the Greater Chicago
region: (a) FIVE, (b) NEMO, (c) LADCO-NU, and (d) UVM at 1 km2 spatial resolution. Insets are centered on the “Loop”, and segments of I-
294 west, and south of downtown Chicago. The corresponding figure for PM2.5 emissions is S7.
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at 4 km2 resolution (Figure S19). PM2.5 distributions are
generally similar across data sets, with means ranging from
0.11−0.18 and medians from 0.02−0.10 tons/km2/year,
showing a positive skew from higher emissions along roadways
(Figure S6).
To identify PM2.5 emission anomalies and distinctive

patterns, we compute differences between individual data
sets and the mean of the four data sets (Figure S7). FIVE
simulates higher PM2.5 emissions across the domain (0.07−
0.95 tons/km2/year), but lower emissions (−0.18−1.49 tons/
km2/year) along interstates. UVM simulates lower PM2.5
emissions than the four-data set mean, except along I-294
west and south of Chicago where emissions are up to 0.89
tons/km2/year higher. NEMO simulates higher emissions
along highways (>2.00 tons/km2/year), in grid cells that
contain hotelling (>1.00 tons/km2/year), and along Lake

Shore Drive (up to 3.17 tons/km2/year). LADCO-NU
simulates PM2.5 emissions up to 2.33 tons/km2/year higher
near the Chicago Loop area, but outside downtown and
interstates, LADCO-NU emissions are generally lower than the
mean within Cook and DuPage Counties.

3.3. Implications of Simulated Emission Uncertainties
for Equity Analyses. Previous studies have overlaid emission
estimates with demographic data to explore emission
distribution inequities.48,49 Here, using the four different
emissions data sets, we perform similar analyses to
demonstrate the impact of emissions uncertainties on
distributional analyses, i.e., studies that stratify impact by
income, race/ethnicity, etc.50 However, it is important to
recognize that the following analyses only quantify the
distribution of traffic-related emissions simulated near
populations and do not explicitly consider pollutant concen-

Figure 3. (a) Relative race/ethnicity composition of the population for deciles of area-weighted average NOx emissions (tons/km2/year) across
census tracts. The Y-axis shows the range of emission magnitudes within each decile, and the X-axis represents population percentages, with the
vertical dashed line marking the 50th percentile. The legend in panel (b) corresponds to the same racial/ethnic groups as panel (a), with yellow
representing "Two or more races" and green representing "Other". (b) Relative NOx emission disparities for racial and ethnic subgroups, calculated
using the FIVE, NEMO, LADCO-NU, and UVM data sets for the Greater Chicago Region. Disparities are expressed as the ratio of subgroup
population-weighted emissions to the domain-wide population-weighted average. Values above 1 (black dashed line) indicate higher-than-average
emissions, while values below 1 indicate lower-than-average emissions. The corresponding figure for PM2.5 emissions is S9.
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tration exposure or public health impacts�measures that are a
product of emissions, meteorology, atmospheric chemistry,
pollutant lifetimes, and, in the case of health, population
susceptibilities.51

First, to investigate the demographic composition of the full
range of simulated emissions, we follow the methods of
Chambliss et al.15 by using area-weighted averages of emissions
within each census tract and stratifying the domain-wide
results by decile and demographic group (i.e., not population-
weighted). Demographic data is sourced from the American
Community Survey 2015−2019.33 Despite the domain’s
majority white population (51%) (Figure S8), the highest
simulated traffic-related NOx and PM2.5 emissions are found in
areas with higher proportions of nonwhite residents (Figures
3a, S9 and S10). This disparity is particularly pronounced
when examining census tracts with the highest emissions (i.e.,
10th decile), where nonwhite residents collectively represent
over 50% of the population in three of the four data sets:
NEMO, LADCO-NU, and UVM. In the remaining data set,
FIVE, the 10th decile is not comprised of a majority of
nonwhite residents, but rather is ∼52% white in both the NOx
and PM2.5 analyses.
Nest, to examine relative emission disparities, we calculate

racial and ethnic subgroup population-weighted average
emissions within the study domain. We define relative
emission disparities following the methods of Kerr et al.,14

by computing the ratio of each subgroup’s population-
weighted emissions to the domain-average. Relative emission
burdens among population subgroups are generally ranked
similarly, with higher relative NOx and PM2.5 emissions
simulated in census tracts with larger Black and Asian
populations (Figures 3b and S9). UVM simulates the largest
relative disparities for the Black population, whereas the other
three data sets consistently show the highest disparities for the
Asian population. Despite general agreement in ranking,
relative NOx disparities vary widely: Black: +2.7% to
+12.2%; Asian: +9.0% to +13.7%; Hispanic: −2.4% to
+3.1%. Conversely, lower relative emissions are simulated for
the White population in all data sets.

4. DISCUSSION
In the above intercomparison, we find similarities and
differences in modeled vehicle emissions data sets. As emission
models advance in sophistication and spatiotemporal reso-
lution, allowing for the simulation of vehicle emissions from
neighborhood to link-level spatial scales, it is critical to evaluate
emission model uncertainties and associated implications.
Diverse emissions estimates have downstream ramifications for
applications that use traffic-related emissions data such as
models that assess air pollutant exposure, health outcomes,
environmental justice, and policy impacts. While many vehicle
emission model inputs are shared and/or similar across
emissions models, variability in input data is primarily driven
by choices related to EFs, traffic activity, and the inclusion/
exclusion of specific vehicle emission processes. Despite the
challenges posed by divergent data inputs in developing the
four emission data sets, which limits direct comparisons and
our ability to pinpoint specific factors leading to observed
similarities and differences, below we highlight methodological
commonalities and distinctions that help to explain divergent
outcomes.
4.1. Emission Factors. Each vehicle emissions model data

set considered here uses EFs consistent with their technical

formulation or model generation. In our intercomparison,
FIVE is the one model that uses fuel-based EFs. FIVE’s on-
road NOx emissions have been found to be within ∼8% of the
EPA’s 2017 NEI nationwide estimates.52 However, our analysis
indicates that over our regional domain, FIVE’s NOx emissions
are substantially higher than those simulated by the 2017 NEI-
informed, MOVES-based NEMO and LADCO-NU data sets.
This discrepancy is likely, in part, attributable to differences in
fuel-specific EFs, as FIVE’s national estimates of NOx
emissions for diesel vehicles are nearly twice as high as those
in MOVESv2014.53 FIVE’s EFs, derived from near-road
observations, suggest that HDV selective catalytic reduction
systems may not be as effective as assumed by regulatory
models like MOVES, which tend to be more optimiztic about
downward trends in HDV NOx emissions.

54 Consequently, in
the Chicago region, where HDV activity is substantial, this
discrepancy may have a more pronounced impact on vehicle
emission estimates. A recent comparison of simulated vehicle
emissions from the MOVES and FIVE data sets, used as inputs
in a chemical transport model (CTM) at 12 km2 resolution,
found that Greater Chicago area NO2 concentrations in FIVE-
based simulations were more than 2 ppb higher than MOVES-
based.18 While pollutant concentration differences varied
regionally, the CTM’s coarse spatial resolution did not capture
hotspots along subgrid-scale features like roadways, suggesting
that differences in NO2 concentrations could be even higher if
assessed at finer spatial resolutions. Conversely, FIVE’s
simulated PM2.5 is more aligned with the other three data
sets, all of which utilize various versions of MOVES EFs for
brake and tire wear�a large source of vehicle PM2.5 emissions.
Model version differences in emission model EFs can also

explain differences between data sets, even if emission models
use a similar modeling framework. For example, NEMO and
LADCO-NU use different versions of the EPA’s MOVES, with
NEMO using MOVESv2014b and LADCO-NU using
MOVESv3. In MOVESv3, the EPA increased HDV running
rate EFs for NOx, reduced HDV tailpipe exhaust EFs for PM2.5,
and reduced hotelling hours.55 These changes have led to a
nationwide decrease in simulated vehicle emissions of NOx and
PM2.5 by 8% and 20%, respectively, when comparing
nationwide simulated emissions from MOVESv2014 to
MOVESv3.55 Although reduced hotelling activity contributes
to lower nationwide NOx levels, urban areas with congested
roads may still experience NOx increases,

55 which contributes
to differences we observe in overall domain totals and spatial
variations in simulated NOx and PM2.5 along major roadways,
e.g., I-80 and I-55. These examples illustrate how EFs can lead
to diverging model outputs, even within data sets developed
using similar modeling frameworks.

4.2. Traffic Activity. To constrain traffic activity, each
emissions model considered here relies on HPMS data, but
they differ in the vintages used and methods used for spatial
distribution. FIVE and UVM use 2018 HPMS data, while
NEMO and LADCO-NU rely on older data sets�2017 and
2016, respectively. Traffic activity in the HPMS data set is
categorized by single unit (HPMS class 4−7), combination
truck (HPMS class 8+), and total AADT.26 FIVE and UVM
emissions are estimated using this categorized AADT paired
with EFs for specific vehicle classes (e.g., LDV, HDV). In
contrast, NEMO and LADCO-NU first disaggregate traffic
data to MOVES vehicle types to calculate county-level
emissions. County-level emissions are then spatially distributed
to a fixed grid using spatial surrogates based on total AADT
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and road type, where road type (e.g., unrestricted) determines
which road segments to allocate HDV emissions.
While NEMO and LADCO-NU’s disaggregation approach

provides detailed emission data, the spatial distribution
methods may introduce uncertainties by potentially leading
to high bias on unrestricted roadways where total AADT
primarily consists of LDV traffic, or vice versa for roadways
experiencing additional HDV traffic such as known freight
corridors. Given that HDVs are disproportionately responsible
for on-road emissions, accurate spatial representation of HDVs
is critical for policy and equity applications. Satellite
observations have found that the EPA’s MOVES modeling
framework may not adequately capture elevated pollution near
areas of dense warehousing,47 which are often located in
nonwhite neighborhoods.56,57 This finding may be amplified
by the spatial distribution methods addressed in this analysis
and the limited traffic data for low-volume roads near freight
hubs−highlighting the need for future emission models to
better account for HDV activity and assessments to quantify
impacts of unaccounted for HDV activity.
4.3. Vehicle Processes. During the development of

vehicle emission models, a crucial decision revolves around
whether to solely address on-road emissions or to include off-
road processes such as cold starts and idling. Our
intercomparison shows that the choice to include off-road
processes results in localized variability. UVM primarily
focuses on on-road running rate emissions, whereas FIVE
integrates both running rate emissions and cold start emissions.
NEMO and LADCO-NU encompass a broader spectrum of
vehicle emission processes, including on-road running rates,
cold starts, and idling activity. In NEMO and LADCO-NU,
cold starts are distributed across the study domain as area
emissions, contributing to domain totals without creating
localized hotspots. However, differences in simulated vehicle
emissions are observed in areas known for hoteling activity.
Although idling activity constitutes a small portion of vehicle
emissions, it impacts localized emission maximums. As
simulated vehicle emissions are modeled at higher spatial
resolutions and used for air pollution exposure assessments,
accurately representing all off-road vehicle emission processes
becomes increasingly important.
4.4. Recommendations. Highlighting potential factors

that lead to discrepancies in simulated vehicle emission data
sets at equity-relevant spatial resolutions is necessary for
identifying uncertainties and increasing data set accuracy,
which in turn can support the design of policies that can more
effectively mitigate traffic-related pollution and promote
environmental equity. Although emissions data sets developed
using different methodologies yield divergent outcomes, each
data set considered here has limitations that warrant
consideration when used in equity-focused analyses. For
example, MOVES-based models, including NEMO and
LADCO-NU, are particularly advantageous for regulatory
applications due to their granular outputs, such as emissions
estimates stratified by vehicle class and fuel type. However, we
recommend utilizing the most up-to-date MOVES-based
modeling platforms and considering local HPMS data for
both combination trucks and total AADT to better evaluate the
spatial distribution of simulated emissions, particularly in urban
areas with substantial HDV activity. The UVM data set, while
offering higher spatial resolution and potentially greater
accuracy for localized on-road traffic emissions, requires
Supporting Information to account for contributions of off-

road processes and cannot be used as input in chemical
transport models. As a result, the UVM data set may be better
suited for applications such as urban planning and local policy
development. FIVE, in contrast, provides a complementary
perspective by employing remote-sensed fuel-based EFs,
offering an alternative characterization of emissions�partic-
ularly from diesel vehicles�that diverges from MOVES-based
methodologies. A more apt intercomparison could be achieved
if FIVE data were prepared at a higher-spatial resolution,58,59

however it was unavailable for this domain. To fully leverage
data set intercomparisons, improved access to emission models
is needed as is formalized collaboration across modeling
groups. Such an effort would enable cross-model spatiotem-
poral sensitivity analyses, improved uncertainty quantification,
and refined methodologies that could increase the accuracy
and reliability of vehicle emission data sets for applications in
air quality, health, and policy assessments.
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