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Abstract

Urban and industrial environments present a major challenge for seismic event detection
and classification. Anthropogenic events can closely resemble tectonic signals and reduce
their signal-to-noise ratios, leading to misclassifications of earthquakes and tremors. By
detecting and characterizing these anthropogenic events, we can improve detection algo-
rithms and motivate new applications in seismic monitoring and imaging. In this study,
we develop a workflow to detect and cluster anomalous seismic events, recorded by a
broadband seismic station installed in a unique industrial corridor of the Chicago area.
Our workflow consists of (1) a power spectral density (PSD) misfit detector to detect
anomalous events in continuous data and (2) a k-means clustering model to generate
clusters of anomalous events. We discuss our workflow development, where we select
parameters and generalizable model features to maximize the coherence and interpret-
ability of generated clusters. When applied to two years of continuous seismic data, our
workflow successfully identified several classes of events, including surface quarry blasts,
underground blasts, and machinery operations. Using our results, we created a labeled
data set of 1000+ man-made seismic events in the Chicago area. Our study demonstrates
how a simple PSD detector and clustering model can be used to efficiently mine through a
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noisy multiyear data set and create an event catalog.

Introduction
Urban and industrial environments are characterized by
dynamic, high-amplitude seismic noise, which can pose a seri-
ous challenge for earthquake detection and discrimination.
Persistent anthropogenic noise—seismic noise from human-
generated activities like traffic or construction—can decrease
the signal-to-noise ratios of seismic events, leading to missed
detections of earthquakes and other signals of interest.
Impulsive anthropogenic events (e.g., quarry blasts, train sig-
nals) have also been falsely detected as earthquakes or tremors
(e.g., Liet al, 2018; Maher et al., 2024). With rapid urbanization
and industrialization, these detection challenges within built
environments are growing in number and complexity. In
response, recent studies have developed new algorithms to
remove persistent anthropogenic noise from seismic data
(e.g., Karasozen and West, 2022; Yang et al., 2022). However,
due to the broad spectrum and diversity of anthropogenic noise,
further research is needed to develop robust algorithms that can
accommodate diverse detection environments. Developers and
other stakeholders have recommended expanding labeled data
sets with dynamic anthropogenic noise, to develop and refine
such algorithms (Mousavi et al., 2020; Maher et al., 2024).
With a growing number of studies that address the chal-
lenge of anthropogenic noise, there is also a growing body
of research that harnesses this “noise” for innovative
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seismological applications. Recent studies have shown that
urban seismometers can offer a cost-effective, less-invasive
means of monitoring vehicular and even foot traffic (e.g.,
Diaz et al.,, 2017; Jakkampudi et al., 2020; Li et al, 2023).
Traffic noise has also shown great potential as a passive source
for near-surface imaging (e.g., Quiros et al., 2016; Zhang et al,
2019). Within education and outreach, urban seismic events—
especially those from major cultural activities like concerts and
sports games—can capture mass media interest, showcasing
the field of seismology to a wider audience (e.g., Diaz et al.,
2017, 2020; Caplan-Auerbach et al., 2024).

These diverse applications of anthropogenic noise motivate
exploratory research in built environments. Whether the aim is
to harness or remove anthropogenic noise, it is valuable to
identify the seismic signatures of dominant man-made signals.
Previous studies have characterized seismic data within
densely populated cities such as Long Beach (Riahi and
Gerstoft, 2015; Snover et al., 2020), Bucharest (Ritter et al.,
2005), Auckland (Boese et al, 2015), and London (Green
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et al., 2016). In this study, we explore seismic data from a
broadband seismometer (NW.HQIL) installed in a unique
industrial corridor of the Chicago area. The station was
installed shortly after a magnitude 3.2 earthquake in 2013, near
its epicenter to search for aftershocks and was operational until
December 2019. Its noisy location—within a few kilometers of
dense residential districts, quarrying operations, a flood-con-
trol reservoir, major highways, railroads, a sports stadium, and
a commercial airport (Fig. 1)—generates thousands of tran-
sient events in just a few days of data. This combination
of urban and industrial features makes station HQIL a unique
site for exploratory research.

Manually exploring the rich, heterogeneous data of this
station is time-consuming and challenging, especially when
attempting to find patterns and groups of repeating events.
Here, we present a semiautomated approach to identify
clusters of anomalous seismic events in continuous, three-
component data. Our approach is divided into two stages:
(1) applying a power spectral density (PSD) misfit detector
to identify anomalous events in continuous data and (2) apply-
ing an unsupervised learning model (k-means clustering) to
group the anomalous events detected in stage 1. Using the
results of our clustering analysis, we created a labeled data
set of 1262 man-made signals recorded in HQIL data, placing
a special emphasis on impulsive events that have earthquake-
like characteristics.
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Figure 1. Map of southwest Chicago and suburbs, showing the
locations of station NW.HQIL (star at 41.80° N, 87.85° W) and
local noise sources. Figure was created with QGIS using ESRI
Satellite Imagery. The color version of this figure is available only
in the electronic edition.

PSD Misfit Detector

Our two-stage methodology is outlined in the concept map of
Figure 2. The workflow begins by applying a PSD misfit detector
to detect anomalous events in continuous data. A PSD misfit
detector measures the difference (or misfit) between the PSD
of a given time window and the PSD of background noise.
“Detected” anomalous events are windows with PSD misfits
above a selected threshold. Unlike the short-term average/
long-term average (STA/LTA) ratio method (Allen, 1978),
which is commonly used for event subselection in machine
learning workflows, the PSD misfit detector can detect anoma-
lous events with low signal-to-noise ratios (SNRs) (Vaezi and
Van der Baan, 2015). PSD-based approaches are particularly
beneficial in urban and industrial areas where persistent
man-made noise (e.g., noise from construction and machinery
operation) can decrease the SNR of anomalous events. PSD mis-
fit approaches have been shown to detect a wide range of events,
including weak microseismic events (Vaezi and Van der Baan,
2015) and industrial operations (Guenaga et al., 2021).
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Methodology

Our PSD misfit approach is based on the methodology of Vaezi
and Van der Baan (2015) with some modifications. We first
computed PSDs of overlapping (50%) 10 s windows in con-
tinuous HQIL data using the Welch method (Welch, 1967).
Waveforms were processed with the following procedure prior
to PSD computation: filling gaps via linear interpolation, linear
detrending, and response correction to convert from counts
to ground acceleration. Note that the gap-filling step was
performed prior to this study when saving the raw data as
local files. This step can be omitted with minimal impact
on the results. Using a methodology similar to McNamara
and Buland (2004), PSDs of each 10 s window were computed
by taking the average PSD of 13 overlapping (50%) subseg-
ments of 2.5 s. This subsegmentation and averaging procedure
reduce the variance of each power measurement, providing
a more stable PSD estimate of each 10 s window. We then
computed the weighted difference u[f] between the PSD of
the 10 s window, PSD[f], and the PSD of a “background noise”
window, PSDy,[f], using the following equation:

_ PSDJf] - PSDy,[f]

ol W

ulf]
in which oy, is a standard deviation estimate of the “back-

ground noise” PSD at a given frequency f. The Dynamic back-
ground noise section describes how we estimated PSDy,[f] and

0pg[f] for HQIL noise.

Following the methodology of Vaezi and Van der Baan
(2015), we set u(f)-values below 1 as zero:

it = {7

Finally, we computed the PSD misfit A of each 10 s window:

if ulf] > 1
if u[f] < 1. @)

1 N
A=— " 3)
N;“[f

in which N is the number of all discrete frequencies that comprose
the PSD estimate PSD[f]. In summary, our PSD misfit A is the
average value of the adjusted difference u [f] between the PSD of a
10 s window and the PSD of a “background noise” window.

Dynamic background noise

Selecting an appropriate background noise PSD for urban/
industrial environments is particularly challenging due to their
Volume XX« Number XX
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Figure 2. Concept map of study methodology for detecting and
clustering anomalous events in continuous, single-station data.
PSD, power spectral density.

strongly heterogeneous and time-dependent noise. Noise levels
typically peak during daytime hours of the workweek and
decrease during evening and night hours. Because of this
dynamic nature of man-made noise, we implemented a
dynamic or time-dependent background noise window for
our misfit detector. Depending on the following four times
of day, a different background noise PSD, PSDy[f], and stan-
dard deviation estimate, oy,,[f], will be selected:

. Night: 12:00 a.m.-6:00 a.m.

. Morning: 06:00 a.m.-12:00 p.m.

. Afternoon: 12:00 p.m.-06:00 p.m.
. Evening: 06:00 p.m.-12:00 a.m.

W N =

All times are with respect to the local Chicago time
(US/central time zone). Compared to a static or time-constant
background noise window, a dynamic PSD is better suited to
detect anomalous events during low-noise periods (e.g.,
nighttime).

To estimate the four background noise PSDs and their stan-
dard deviations, we randomly selected 50 days in the time
period of July 2014 to December 2019, excluding select days
with poor or incomplete data. We then computed 1 hr
PSDs for each station component using the same methodology
of McNamara and Buland (2004), omitting the smoothing pro-
cedure. For each of the four time periods, we computed the
average and standard deviation of all 1 hr PSDs that occurred
with that period. The average PSD and standard deviation are
then smoothed using the 1/8 octave smoothing procedure
implemented by McNamara and Buland (2004) and decimated
to have the same frequency resolution of the 10 s PSDs. The
processed averages and standard deviations became the back-
ground noise PSDs, PSDy,[f], and the standard deviation esti-
mates, Op[f], for our misfit detector. Figure 3 shows the
background noise PSDs, PSDy,[f], we used for all three station
components and four times of day.

Threshold selection

Our dynamic PSD misfit detector was applied to overlapping
(50%) 10 s windows that span about two years of HQIL data
(June 2017 to June 2019). After manually inspecting a subset of
10 s windows and comparing their PSD misfit values, we

Seismological Research Letters 3

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220250109/7312180/srl-2025109.1.pdf
bv Northwestern lIniversitv user



HH2 HH1

(@) iz (b)
—— Morning —— Morning

o =901 . ternoon o =901 - Atemoon
T ~-- Evening T ~-- Evening
it —— Night s — Night
= -100 T -100

g I

N <

) v

~ -110 ~ -110

£ £

3 E

g -120 g 120

o o

) =)

» —130 v —130

o 9] Sy
3 H

o o

a 140 & _140

—
(2]
~—

—— Morning
=== Afternoon
~=- Evening

—— Night

|
©
(<]

|
=
o
S

-110

=120

-130

Power [10log10(m?/s%/Hz)] (dB)

-140

10° 10! 10°
Frequency (Hz)

decided on a misfit threshold of 1.0 standard deviation; if
the PSD misfit of any component of a 10 s window is above
1.0 standard deviation, then it is detected as an anomalous
event and passed to the clustering model. With this threshold,
about 5% of all overlapping windows in the two-year data set
are detected. As will be discussed in the Application and
Analysis section, the PSD misfit detector identified a diverse
range of events in our two-year data set, including both
narrowband and broadband anomalies spanning a wide range
of SNRs.

K-means Clustering

After detecting anomalous events using the PSD detector, we
applied the k-means clustering algorithm to identify groups
(clusters) of repeating anomalous events of the same source.
The k-means algorithm (also known as Lloyd’s algorithm,
Lloyd, 1982) is an unsupervised learning algorithm that groups
unlabeled data into k number of clusters. The algorithm aims
to assign cluster labels that minimize the following criterion
known as inertia J:

n

J= ZZ G = w112 (4)

k
k=1 i=1

in which k is the number of clusters, #n is the number of data
points, x; is the ith data point, and u; is the kth centroid.
The algorithm begins by setting an initial guess of cluster cent-
roids and assigning each data sample with the cluster label of its
closest centroid. Cluster centroids are then reset to be the aver-
age of all assigned data samples in that cluster. This process of
assigning cluster labels and resetting cluster centroids is repeated
until the centroids are stable (Watt et al., 2016; Yuan and Yang,
2019). With this simple iterative procedure, the k-means algo-
rithm is a powerful and widely used tool in seismology for
exploratory data analysis (Johnson et al., 2020; Mousavi and
Beroza, 2023; Saadia and Fotopoulos, 2023). It is critical to care-
fully select model features and a k-value for the algorithm to
produce meaningful and well-separated clusters.

Feature selection
Table 1 details the features we explored and selected for our

final clustering model. The majority of the features are
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Figure 3. Background noise power spectral densities PSDyg used
in the PSD misfit detector for each component of station HQIL:
(a) HHZ, (b) HH1, and () HH2. PSDy, are estimated for four times
of day: night (12:00 a.m.-06:00 a.m.), morning (06:00 a.m.—
12:00 p.m.), afternoon (12:00 p.m.—06:00 p.m.), and evening
(06:00 p.m.—12:00 a.m.). All times are with respect to local
Chicago time (US/central).

statistical and are motivated by our previous work on earth-
quake detection in the Chicago area (Thomas et al., 2023).
For each 10 s window detected by the PSD misfit detector,
we computed its STA/LTA (Allen, 1978) ratio using the
10 s detection as the short-term (ST) window and a preceding
40 s window as the long-term (LT) window. We also computed
the skewness and kurtosis of the 10 s window. Each statistical
feature was computed on waveforms that were processed with
the following procedure: filling gaps via linear interpolation,
linear detrending, and division by the stage zero sensitivity
to convert to units of velocity. Additional features include
the previously computed PSD misfit values, the hour of day,
and the day of the week corresponding to each 10 s detection.
Excluding the two temporal features (hour and day of the 10 s
window), each feature is computed on each of the three chan-
nel components (HHZ, HH1, and HH2).

Our feature selection was informed by the observed tempo-
ral characteristics of urban and industrial noise in the Chicago
area. As expected, man-made noise dominates the seismic rec-
ord during daytime hours of the weekday. Events like quarry
blasts consistently occur at the same few hours of the early
afternoon, likely due to a routine blasting schedule. Events
of different noise sources can also be differentiated by their
event duration. Compared to blastlike events, construction
noise and machinery operation tend to be longer in duration
(210 s), resulting in a distinct skewness and kurtosis value for a
10 s window. Using a combination of statistical and time-based
features, we aimed to maximize the separation between noise
events of different sources.

From this initial list of 14 total features, we selected a subset
of 10 model features using a simple correlation analysis.
Because highly correlated features can introduce unnecessary
complexity into a clustering algorithm, we aimed to remove
redundant features from the initial list. For three weeks of
Volume XX« Number XX
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— .-...-..-...-. . features to eliminate any fea-
ture pairs with correlations
STAEEEEEA . greater than 0.85: a threshold
determined through empirical
testing to balance redundancy
reduction and feature reten-
tion. See Table 1 for all features
included in the final model.

STA/LTA [HH2]
Skewness [HHZ]
Skewness [HH1]
Skewness [HH2]

Kurtosis [HHZ]
Number of clusters

We explored both quantitative
and qualitative methods to
determine the number of clus-
ters k to use in our model. For
events detected by the PSD
misfit detector in three weeks
of HQIL data (1-21 August
2017), we applied the k-means
clustering algorithm for k-val-
ues ranging from 2 to 20. We
implemented Lloyd’s k-means
algorithm using the Python
package scikit-learn and its

Kurtosis [HH1]

Kurtosis [HH2]

PSD misfit [HHZ]

Pearson correlation coefficient

PSD misfit [HH1]

PSD misfit [HH2]

Hour

Figure 4. Correlation matrix of the 14 features, detailed in Table 1, corresponding to anomalous events

detected in 3 weeks of HQIL data. The following features were omitted in the final model to eliminate default hyperp aram'eter s
any feature pairs with correlations greater than 0.85: STA/LTA [HH1], PSD misfit [HH1], Kurtosis [HHZ], (greedy k-means++ algorithm
and Kurtosis [HH2]. The color version of this figure is available only in the electronic edition. for cluster centroid initializa-

tion, 300 maximum iterations)
(Pedregosa et al., 2011).

HQIL data (1-21 August 2017), we applied the PSD misfit As a quantitative method, we computed the silhouette coef-
detector and computed all 14 features for the detected events.  ficient—a measure of intracluster similarity and intercluster
We then computed the correlation coefficient of each pair of  separation (Yuan and Yang, 2019)—for each k-value. We also
features. Figure 4 shows the correlation matrix of the 14 fea-  applied the elbow method, which identifies the optimal k-value

tures computed for the three-week data set. We removed four  as the value that corresponds to an “elbow” or an inflection

TABLE 1
Features Explored and Selected for the Clustering Model

Feature Description Equation HHZ HH1 HH2
=t bl

N, -T
D ko bl

STAILTA Ratio of the average absolute amplitude in the 10 s short-term (ST) window to the Yes No Yes

average absolute amplitude in a preceding 40 s long-term (LT) window

Ng+N -1 o3
Skewness  Skewness of the amplitude distribution in the 10 s window /Ns % Yes Yes Yes

(Zni;f (y[n]—?)Z)

S glnl-pt
Kurtosis Kurtosis of the amplitude distribution in the 10 s window Ng = — 7 No Yes No

(ZNS*NL’* (y[n]—W)
n=N

PSD Misfit between the power spectral density (PSD) of the 10 s window and a background  See equation (3) Yes No Yes
misfit noise PSD
Hour Hour of day in local time corresponding to the 10 s window. Value is an integer within ~ N/A Yes

the interval [0, 23].

Day Day of the week corresponding to the 10 s window. Value is an integer within the N/A Yes
interval [1,7], in which 1 is Monday and 7 is Sunday.

The discrete time series y{n] includes amplitudes of the 10 s window detected by the PSD misfit detector and a preceding 40 s window. N is the number of samples within the 10s
window and N, is the number of samples within the 40 s window. STA/LTA, short-term average/long-term average.
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point within an inertia versus k plot (Yuan and Yang, 2019).

Time (s)

Both methods suggested k-values below 7.

As our qualitative approach, we visualized a subset of events
in every cluster for each tested k-value. We found that a k-value

Time (s)

Time (s)

Figure 5. (a—d) Examples of HQIL anomalous events in the four

event types (A-D) described in Table 2. The gray dashed lines

of 12 consistently produced a cluster of signals that indicated
an operational change (i.e, machinery turning ON and
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producing a sudden change in relative amplitude, see Fig. 5b).
These signals are of special interest because they have
been commonly misclassified as earthquakes by earthquake
detection algorithms; they constituted about 20% of
EQTransformer (Mousavi et al., 2020) detections for station
HQIL in 2015 (Thomas et al., 2023). For lower k-values,
these transitional signals were combined into large clusters
(>3000 events) of high-amplitude long-duration events.

Selecting a k-value of 12 resulted in a silhouette score
of 0.36, which indicates fair clustering structure but strong
overlapping. This overlapping quality was evident in our
visualization analysis because a few small clusters (<30 events)
contained similar blast events. Although choosing a smaller k
would reduce this overlapping and produce a higher silhouette
coefficient, we decided to compromise on this consequence in
exchange for a strong, distinct cluster of transitional signals. It
is less time-consuming to manage multiple small clusters,
which ideally should be combined, compared to sifting
through large clusters to find a few signals of interest. Hence,
we finalized our workflow with a k-value of 12, as supported by
our qualitative approach.

Model fitting
Our final k-means clustering model was trained on 21,293
anomalous events detected by the PSD misfit detector in
3 weeks of HQIL data (1-21 August 2017). We used the 10
features listed in Table 1 and a k-value of 12. We trained the
final model using scikit-learn (Pedregosa et al., 2011) and its
default parameters for k-means clustering (k-means++
Volume XX« Number XX
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Figure 6. Examples of vertical-component spectrograms for event
types (a—d) A-D described in Table 2. Each spectrogram shows
10 s before and after the event onset. Raw waveforms were
linearly detrended and converted from counts to ground velocity
by dividing by the stage-zero sensitivity. Color scales are in units
of micrometers per second. The color version of this figure is
available only in the electronic edition.

initialization of cluster centroids, Lloyd’s algorithm).
Hereafter, we refer to this model as the pretrained model.

Application and Analysis

We applied the pretrained clustering model to 654,410 ten-sec-
ond windows of anomalous events detected by the PSD misfit
detector in two years of HQIL data (June 2017-June 2019).
Applying the pretrained model to both the 3-week training
data set and the full two-year data set produced similar clusters
and cluster distributions. During workflow development, we
also evaluated the clustering performance of a k-means model
trained on the full two-year data set. Our decision to use the
pretrained model in the final workflow is described in detail in
the Discussion section.

To characterize each cluster and identify potential noise
sources, we analyzed the average spectra and a subset of wave-
forms in each cluster of the two-year data set. We also exam-
ined their temporal occurrences using heat maps. This analysis
identified four major event types that characterize one or
multiple clusters in our data set. Table 2 provides descriptions
of the four event types and their distribution in both the
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TABLE 2

Description, Potential Sources, and Cluster Distribution of Detected Event Types

Type Description

A Long-duration (>10 s) man-made noise, dominated
by 11 Hz energy (characteristic of eight-pole
motors). Predominantly occurs during weekday
daytime hours.

B Transitional signals (turning ON signals) with similar
waveform and spectral features as type A events.
Signals typically have high STA/LTA ratios.

C High-amplitude, short-duration (<10 s) blasts,
dominated by high-frequency energy (>30 Hz).
Signals typically have a maximum amplitude on the
order of 0.001 m/s across all components.
Predominantly occurs between 11:00 a.m. and
02:00 p.m. local time on weekdays.

D Low-amplitude blast-like events of mixed sources.
Signals have a maximum amplitude that are about
1-3 orders of magnitude lower than type C signals.
Occurs during a wide range of hours, but

Distribution
Cluster All

Potential Source(s) Label(s) Training Data
Operation of industrial machinery (e.g., conveyor 0,2,57,10 98.5% 98.6%
belt with an eight-pole motor)

Turning ON of type A machinery " 1.35% 1.20%
Surface blasts at the nearest quarry (<1 km from 1,4,6,8,9 0.06% 0.10%
HQIL)

Quarry blasts with source distances =1 km from 3 0.06% 0.11%

station HQIL (D1), underground explosions at the
nearest quarry (D2), wind interaction with local
structures (D3)

predominantly from 12:00 p.m. to 02:00 p.m. local
time.

STALTA, short-term average/long-term average.

training set (1-21 August 2017) and the entire two-year data
set. Figures 5 and 6 show example waveforms and spectro-
grams, respectively, of each event type.

Our visual analysis of the two-year data set revealed a mod-
erately strong degree of cluster coherence. With the exception
of cluster 3 (event type D), events within a cluster generally
had similar spectral features and likely originated from the
same source (e.g., industrial machinery, surface quarry blasts).
However, some cluster overlapping was observed. When
visualizing a randomized subset of events, about 70% of the
events in each cluster matched the description given in Table 2;
the remaining events were either misclassified or consisted of
signals not clearly associated with any of the event types
described in Table 2.

As discussed in the Number of clusters section, selecting a
high k-value of 12 resulted in multiple clusters containing the
same event type. These events were likely grouped into differ-
ent clusters based on their temporal occurrence. For example,
clusters 0 and 2 contain events with similar waveforms and
spectra, indicating a similar source or event type. However,
cluster 0 events predominately occur between 12:00 and
03:00 p.m. local time while cluster 2 events predominately
occur between 06:00 and 08:00 p.m. local time. These temporal
distinctions are of minor significance to our analysis and dis-
cussion. Therefore, we will proceed by referring to events based
on their event types rather than their assigned cluster labels.
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As detailed in Table 2, type A events are characterized by
monochromatic waveforms, long durations (>10 s), and a peak
frequency at 11 Hz, indicative of an eight-pole motor (Groos
and Ritter, 2009). A potential source is the operation of heavy
industrial machinery, such as a conveyor belt, at the nearest
quarry operation. Type B events are similar in spectral and
temporal features to type A events, but they are transitional
signals (ie., turning ON of machinery). Type C events are
the highest-amplitude events recorded in station HQIL.
They are short-duration (<10 s) events, dominated by energy
at frequencies >30 Hz. From previous correspondence with
local quarry representatives and residents, a few type C events
have been confirmed as surface blasts from the nearest quarry
operation to HQIL.

Type D events consist of blastlike events with diverse wave-
forms, which are generally lower in amplitude and longer in
duration than type C blasts. They are of special interest because
many type D events have waveform features that are similar to
local earthquakes. Although there are at least five different
types of event waveforms (and thus sources) within type D,
the majority of D events can be grouped into two subtypes:
subtype D1) waveforms of a 3-4 s duration that are dominated
by frequencies below 20 Hz (Fig. 5d, left panel) and subtype
D2) waveforms of a 5-10 s duration and peak frequencies
above 20 Hz (Fig. 5d, center panel). D1 and D2 events make
up about 17% and 46% of all D events, respectively. Both D1
Volume XX« Number XX
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and D2 events occur predominately during early afternoon
hours of weekdays.

D1 events have similar waveforms and timing to type C
blasts but are longer in duration and lower in amplitude, sug-
gesting they may also be quarry blasts but from a farther dis-
tance. Many D1 events show signs of air-wave arrivals that
occur between 2.5 and 3.5 s after the first arrival, indicating
source distances of about 1 km. There are two quarry opera-
tions within a 5 km radius of HQIL. Type C events are surface
blasts from the nearest operation and D1 events are likely sur-
face blasts from the second operation.

Compared to D1 events, D2 events have a more complex
seismic signature. Generally, D2 events are composed of
5-15 bursts with variable time intervals between bursts.
From previous correspondence with local quarry representa-
tives, one D2 event was confirmed as an underground blast
at the nearest quarry operation. To further test this potential
source of D2 events, we applied our PSD misfit detector and
pretrained model to the 6-month period preceding the quarry’s
official transition to underground blasting. When analyzing
cluster 3 (type D) events, we did not detect any events that
strongly resembled D2 events, indicating that underground
explosions are the likely source for D2 events.

Although few in number, we also detected 11 events (D3
events, Fig. 5d, right panel) that have features that look like
P- and S-wave arrivals. All D3 detections occurred during late
afternoon or early evening hours. This temporal trend and
their high-frequency content suggests that D3 events are not
earthquakes. D3 events closely resemble wind-generated sig-
nals characterized in Johnson et al. (2019, see their fig. 9).
The earthquake-like signals of the 2019 study are generated
from wind interaction with local vegetation and structures
(Johnson et al., 2019). An independent investigation is needed
to verify that D3 events are indeed wind-generated.

Labeled Data Set
Using the results of our clustering analysis, we created a labeled
data set of 1262 events recorded by station HQIL. Links to
metadata and three-component seismograms (stored as
miniSEED files) are provided in Data and Resources. Each
miniSEED file is 20 s in duration, containing 10 s before
and after the onset of each event. The data set contains all type
C and type D1-3 events detected during our two-year study
period. There are 176 type C, 75 type D1, 199 type D2, and
12 type D3 events. We also include a subset of type A and type
B events (400 events each). Note that our workflow detected
thousands of types A and B events in our two-year data set.
However, due to the manual inspection procedure described
subsequently, we only included a subset of these events.

For each event in the data set, we manually inspected their
waveforms and spectrograms to (1) confirm that the event type
matches the description given in Table 2, (2) check for any
hidden transient event signals in both the 10 s detection
Volume XX« Number XX
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window and the preceding 10 s window, and (3) manually pick
the onset time for each event. Because we used overlapping
(50%) 10 s windows, the window start time of an event
may not coincide with its real onset (or first wave arrival)
(see Fig 5). Onset times are not applicable for type A events,
so their “onset times” are the same as their window start times.

Discussion

Our motivation and methodology for seismic exploration in
built environments are similar to those of Saadia and
Fotopoulos (2023) and Chai et al. (2025), who also apply an
unsupervised learning approach to an urban or industrial set-
ting. In this study, we develop and apply our workflow to a
longer, multiyear data set in a unique urban and industrial
environment. Unlike previous studies, we place a special focus
on impulsive, blast- and earthquake-like signals and create a
labeled data set that can be used to improve future earthquake
detection and discrimination methods.

In designing our workflow, our guiding philosophy was to
start with the simplest approach and to iteratively add com-
plexity until we were satisfied with the clustering performance
on three weeks of continuous HQIL data. In particular, we vis-
ually inspected the waveforms of clustered events after each
addition or modification to confirm that they produced a vis-
ually discernable improvement in cluster coherence and inter-
pretability. As an example, early iterations of our workflow did
not have a detection stage: we initially applied k-means to all
overlapping windows in continuous HQIL data. Implementing
the PSD misfit detector prior to clustering produced one of the
most substantial improvements in our results. Without this
detection stage, k-means primarily generated small clusters
of high-amplitude surface blasts (type C), with smaller-ampli-
tude blastlike events (type D) and transitional signals (type B)
hidden in large clusters of mixed waveforms.

In line with our guiding philosophy, we began and ultimately
finalized our workflow with one of the simplest clustering algo-
rithms: k-means. After including a detection stage and expand-
ing our feature space with higher-order statistics (skewness and
kurtosis), the k-means algorithm consistently generated coher-
ent, interpretable clusters of diverse anomalous events in our
data set. In the past decade, more advanced clustering methods
(e.g, HDBSCAN as used by Chai et al, 2025) have been
developed to provide a more robust approach for exploratory
data analysis (e.g., Campello et al, 2013). Implementing such
clustering algorithms may further improve our clustering
performance and alleviate some of our major challenges
(k-selection and type D subclustering). Comparing the imple-
mentation and performance of different unsupervised learning
approaches is a promising direction for our future work. Our
labeled data set and the complex built environment of station
HQIL offers a unique testbed for such comparisons.

As mentioned in the Application and Analysis section,
we explored two options for clustering our two-year data
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set: (1) applying the pretrained model (model trained on the
three-week data set) and (2) training a new k-means model on
the full two-year data set using the same parameters as the
pretrained model. Option 2 was theoretically ideal because
it incorporates the full variability of anomalous events in
the two-year data set. However, when we visualized the clusters
of option 2, we found that the transitional signals (type B) were
hidden in large clusters of type A events. This is understand-
able because the features differences between type A and type B
events are relatively small compared to the differences between
these events and higher-amplitude blastlike events (types C
and D). It is possible that a different k-value or set of initial
centroids may generate a well-separated cluster of type B
events for a model trained on the two-year data set. We
finalized our workflow with the pretrained model because it
produced clusters of similar coherence to the clusters of the
3-week training data set. This analysis indicates that our
workflow may be highly sensitive to clustering parameters,
particularly the k-value. At the same time, it also demonstrates
the success of our parameter selection process, which produced
a clustering model that generalizes well to a larger data set.
When adapting our workflow to a different built environment,
we strongly recommend following a similar procedure of
qualitatively assessing clustering performance across different
k-values. We also suggest exploring local news sources and
collaborating with local entities to ensure that no major disrup-
tions or transitions (e.g., moving from surface to underground
mining) occurred during the period used to train the clustering
model. If prior knowledge of local operations is limited, it will
be beneficial to tune and train the clustering model on a larger,
randomized subset of days within your desired study period.

Another promising area for workflow improvement and
comparison is with respect to the dynamic PSD misfit detector.
Our approach accommodates the most prominent source of
variation in HQIL data: diurnal fluctuations. However, week-
day-weekend and seasonal variations also impact HQIL noise,
although to a lesser extent. Incorporating these additional var-
iations into the PSD misfit detector may produce a more
diverse range of detections (e.g., sports stadium events, aircraft
signals, etc.), particularly on low-noise days such as Sundays.
During our workflow development, we considered using sep-
arate background PSDs for weekdays and weekends. However,
we ultimately omitted this distinction after observing that the
local quarry frequently operates on Saturdays.

Our relatively simple workflow produced coherent, inter-
pretable clusters in a noisy two-year data set. With only one
exception, the majority of events in each cluster shared similar
waveforms and thus the same source. Cluster 3 (type D) events
needed to be manually subdivided for analysis. It is possible to
automate this process by training another clustering model
only on type D events. Incorporating frequency-based features
into the original clustering model may also achieve cluster
separation for type D events.
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Despite the heterogeneous setting of station HQIL (Fig. 1),
the majority of detected events were related to the nearest
quarrying operation. This is understandable as the quarry
is the closest noise source and their blasts produce the largest
shaking events in the area. In addition to different types of
blasts, our workflow detected low-amplitude machinery
operations, notably type A events, which do not have a sud-
den amplitude change in the detected 10 s window or a pre-
ceding 40 s window. These types of events would not have
been detected by strictly amplitude-based methods like the
STA/LTA ratio method (Allen, 1978), which require high rel-
ative amplitudes with respect to a preceding “noise” window.
Using a PSD detector in our workflow, we were able to detect
and characterize a diverse range of operations at the local
quarrying facility. Thus, similar to Chai et al. (2025), our
study demonstrates how seismometers can be a cost-effective
and multiuse tool for industrial facility monitoring. When
coupled with additional sensors, our workflow can be
adapted to identify and locate anomalous operations in an
industrial setting.

Finally, by building a labeled data set of 1262 events with
their potential sources, we demonstrate how our workflow
can be used to extract interpretable clusters of signals in a noisy
data set and create an event catalog. With the persistent chal-
lenge of earthquake and tremor detection in built environments,
it can be critical to create/expand catalogs of dynamic nontec-
tonic events, such as the Exotic Seismic Events Catalog (Bahavar
et al., 2019). Nontectonic catalogs can be used to train or refine
detection algorithms to better accommodate man-made events
with quake- or tremorlike features. They can also be used to
identify the sources of unknown events and potentially motivate
new applications in urban and environmental seismology.
Because our workflow is based on a single-station approach,
we acknowledge that our simple data set is limited in its attrib-
utes and capacity. We cannot provide reliable source locations
for our events. In the future, we hope to install a small network
of sensors in the same environment and apply our workflow to
create a robust catalog of located events. We plan to add these
located events to the Exotic Seismic Events Catalog (Bahavar
et al., 2019) for the community to easily access and visualize.

Conclusions
To explore the seismic landscape of a unique urban and
industrial environment of the Chicago area, we developed
a workflow to detect and cluster anomalous events in con-
tinuous data from a single broadband seismometer. Our
workflow uses a PSD misfit detector and a k-means clustering
model for detecting and clustering, respectively. The work-
flow utilizes simple and intuitive features, which can be
applied to other built environments. When applied to 2 yr
of continuous single-station data in the Chicago area, we
detected and clustered over 650,000 windows of anomalous
events. With one exception, our workflow produced coherent
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clusters of events with similar waveforms and likely the
same source. One cluster needed to be manually subdivided
into individual subclusters for event characterization. By
analyzing the temporal and spectral features of each cluster
and subcluster, we successfully identified several sources for
our detections, including industrial machinery operations,
surface quarry blasts, underground blasts, and earthquake-
like signals that are potentially wind-generated. Using our
results, we created a labeled data set of 1262 anomalous
events. Expanding seismic catalogs to include dynamic non-
tectonic events is critical for improving earthquake detection
and discrimination in noisy built environments. Our study
demonstrates how a simple two-stage workflow can be used
to efficiently mine a noisy multiyear data set and build a
labeled catalog of dynamic nontectonic events.

Data and Resources

The code used in this study is available on GitHub at https://github.com/
am-thomas/SeismoExplore-Chicago and has been archived on Zenodo
at https://zenodo.org/records/15047293. Both websites were last updated
on March 2025. Metadata and waveforms of their labeled data set can be
accessed on Zenodo at https://zenodo.org/records/15047874 (last modi-
fied May 2025). HQIL waveforms and metadata are publicly available;
they were accessed using the facilities of EarthScope Consortium. These
services are funded through the National Science Foundation’s
Seismological Facility for the Advancement of Geoscience (SAGE)
Award under Cooperative Agreement EAR-1724509. Their code is writ-
ten in Python and utilizes tools from NumPy (Harris et al., 2020), SciPy
(Virtanen et al., 2020), ObsPy (Beyreuther et al., 2010), and Scikit-learn
(Pedregosa et al., 2011). Visualizations were created using Matplotlib
(Hunter, 2021) and Seaborn (Waskom, 2021).
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