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Abstract vertical component data from 206 broadband seismometer stations from Korean networks
Korean Institute of Geoscience and Mineral Resources and Korea Meteorological Administration, the
Japanese F-net network, and the Chinese New China Digital Seismograph Network and Northeast China
Extended Seismic Array network are collected for the year 2011, and the ambient seismic noise is analyzed.
Rayleigh wave group velocity distribution maps are created in the period range 10 to 70 s. Our results are
largely consistent with previous studies of the area but provide greater detail in the Korean peninsula and
the Sea of Japan. Low group velocities are observed in the Ulleung basin, and the Chubu-Kanto and Kyushu
regions in Japan. At 10 s period, sediment basins in the Sea of Japan appear as low group velocity regions
relative to higher group velocity continental regions. At periods longer than 40 s, a low group velocity region
emerges in the Ulleung basin region, and is bounded by the Korean peninsula.

1. Introduction

Ambient seismic noise analysis is now an established method for producing tomographic models in regions
of low seismic activity. Laboratory experiments have shown that one can estimate the Green’s function

for the medium between a pair of receivers, assuming a diffuse wavefield (i.e., random wave phases and
azimuthally isotropic and spatially homogeneous wavefield) [Lobkis and Weaver, 2001]. Although the ambi-
ent seismic wavefield is not diffuse [Mulargia, 2012], group and phase velocity dispersion curves extracted
from the noise are consistent with similar measurements made using earthquake signals [Shapiro et al.,
2005], suggesting that a fully diffuse field is not a requirement for ambient noise tomography.

The Korean peninsula has a relatively low rate of seismic activity, and earthquakes with magnitudes M,, > 4.0
occur less than once per year on the Korean peninsula [Choi et al., 2009]. Such a low occurrence rate makes
it difficult to perform a high-resolution regional study of the crust and upper mantle using earthquake data.
Thus, the Korean peninsula presents a prime region for ambient seismic noise analysis.

Seismic velocity models derived from ambient seismic noise analysis have been produced for various loca-
tions around the world [e.g., Moschetti et al., 2007; Lin et al., 2007; Liang and Langston, 2008; Bensen et al.,
2009; Yang et al., 2010]. While models have been produced for the greater East Asian region [e.g., Zheng

et al, 2011], none incorporate data from the Korean broadband seismometer networks operated by the
Korea Meteorological Administration (KMA) and the Korean Institute of Geoscience and Mineral Resources
(KIGAM). Other studies including KMA and KIGAM data have either used accelerograph stations which limit
the analysis to relatively high frequencies, i.e, > 0.15 Hz [Choi et al., 2009; Kang and Shin, 2006], or have
included KMA broadband stations in conjunction with accelerograph stations [Cho et al., 2007] to extend
the analysis to the period range 0.5 to 20 s.

Here we produce high-resolution Rayleigh wave group velocity maps of the region. A map of the study
region is provided in Figure 1. Using 88 stations from the Northeast China Extended Seismic Array (NECES-
SArray) in Northeast China, four stations from the New China Digital Seismograph Network (IC), 19 stations
from the KMA network, 21 stations from the KIGAM network, and 74 stations from the Japanese F-net
network, we have produced Rayleigh wave dispersion curve maps in the period range of 10to 70's.

2. Data Processing

We collected vertical component data at 1 sample per second from 206 broadband seismometer stations in
Korea, Japan, and China for the year 2011. Each station’s data had their instrument responses removed and
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Figure 1. Map of the stations used in this study. Included are 19
KMA stations (red), 21 KIGAM stations (blue), 4 IC stations (purple),
74 F-net stations (yellow), and 88 NECESSArray stations (cyan).
Abbreviations are as follows: ES: Sea of Japan; UB: Ulleung Basin; CB:
Chubu; KT: Kanto; KU: Kyushu.

were merged in one time series in order
to resolve timing issues. In order to effi-
ciently cross-correlate 2 yearlong time
series, the merged time series were cut into
24 h chunks which were detrended. Large
amplitude events, such as earthquakes, can
overwhelm seismic surface wave signals

in the ambient noise. Therefore, to down-
weight large amplitude signals, as well as
to simulate the diffuse wavefield require-
ment of equipartitioned modes, the time
series must be processed in a step referred
to as normalization. Each 24 h chunk was
normalized using the frequency-time nor-
malization (FTN) method described by Shen
et al [2012]. In short, the FTN method works
by subjecting a seismogram to a series of
narrow band-pass filters, dividing each fil-
tered time series by its envelope, and finally
summing the individual filtered and nor-
malized time series. We choose to use the

FTN method over the running-absolute-mean method of Bensen et al. [2007] because we find that the FTN

method generally produces cross correlations with larger signal-to-noise ratios (SNRs). We define the SNR to
be the ratio of the maximum amplitude in a signal window to the RMS of a 500 s long trailing noise window,
2000 s after the signal window. The signal window is defined by the arrival times for surface waves traveling

at 2 and 5 km/s for a particular station pair.

After normalization, each unique pair of stations have their respective 24 h time series cross correlated and
stacked. Usually, the entire data set is cross correlated and stacked, as it has been shown that the cross cor-
relation approximates the Green’s function of the medium between the receiver pair as the cross-correlation
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Figure 2. Dispersion curve measurement for the KMA station pair
BAR and DAG2. The black dots are dispersion curve measure-
ments made on 90 random days chosen out of the year 2011. The
blue points are the mean dispersion curve with associated stan-
dard deviations for error bars. The red curve is a dispersion curve
measured for a full 1 year stack.

window increases. However, to estimate
the errors in the measured group veloci-
ties we choose multiple sets of 90 random
days to cross correlate and stack. In Figure 2,
we show that the mean dispersion curve
obtained from an ensemble of disper-

sion curves measured from random 90

day stacks approaches that of the 1 year
stack. The standard deviations obtained this
way represent a lower limit on the possi-
ble uncertainty as a result of the temporal
variation in the noise source distribution.

Zeng and Ni [2010] noted interference in
their Green'’s function approximations from
Rayleigh waves generated by a strong, per-
sistent microseismic source located on the
Japanese island of Kyushu. Ignoring this
deviation from the assumption of a diffuse
field could result in a systematic overesti-
mation of Rayleigh wave group velocities.
The location of this signal was reaffirmed by
Zheng et al. [2011], and it was attributed to
volcanic tremors at Aso volcano [Takagi et al.,
2009]. To assess the effect of the Kyushu
microseism on our data set, we replicate

WITEKET AL.

©2014. American Geophysical Union. All Rights Reserved.

8046



@AG U Geophysical Research Letters 10.1002/2014GL062016

a) | ] o . 9] '
Il |
T ‘Timiz (.s) e o = .Tim(ie (s) " =
Te T T Ta
Time (s) Time (s)

Figure 3. Cross correlations (CC) between stations SSE and INCN. (a) Raw 2 year stack of CCs for years 2007 to 2009.

(b) Envelope of (a) filtered between 10 and 12 s period. (c) Raw 1 year CC stack for the year 2011. (d) Envelope of
Figure 3c filtered between 10 and 12 s period. The Kyushu microseism is seen to be active during the time period
2007-2009, but not for the year 2011. The signals here were retrieved using the FTN method. Compared with the results
of Zheng et al. [2011], the FTN method produces results consistent with RAM.

the observations of Zheng et al. [2011] by cross correlating the same 2 years of data (2007-2009) for sta-
tions INCN and SSE, and we compare it to a 1 year stack for the year 2011 (Figure 3). Evidently, the Kyushu
microseism does not appear to have much of an effect for the year 2011. Record sections of F-net stations
cross correlated with all other stations are also missing the Kyushu microseism signal. We thus conclude that
for our data set, the Kyushu microseismic signal is below the noise level and should not have an effect on
our resulting dispersion curve measurements. By comparing cross-correlations before and after the 2011
Tohoku earthquake, we also find that the 2011 Tohoku earthquake and its aftershocks do not significantly
alter our measurements.

Before dispersion curve measurement, quality control is performed in a multistep process. We find a useful
statistic to be the correlation coefficient (CC),

N
CXY
cC =L M

Y N2 Nz’
XX Y;

which is simply the covariance of two signals x and y divided by the product of their standard deviations. For
two perfectly correlated signals, CC = 1, while two perfectly anticorrelated signals will have a CC = —1.

Most studies use the so-called symmetric signal, which is the average of the negative ("acausal”) and posi-
tive ("causal”) lag time sides of the cross correlation, with the natural assumption that the Green'’s function is
equal for both time directions. In this case, the symmetric signal should at least have the same SNR as both
causal and acausal sides without any loss of information. However, in the presence of an asymmetric noise
source distribution, we find that averaging the acausal and causal sides of the cross correlation may result in
a decrease in SNR in different frequency bands. Should the symmetric operation result in a higher SNR, the
acausal and causal sides of the cross correlation will be in phase and the corresponding CC for the two sides
will be greater than zero.
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We measure the CC on the causal side of the cross correlation with respect to the acausal side, in their
respective signal windows. By plotting a 2-D histogram of the CC versus the SNR after the symmetric oper-
ation, we have chosen a conservative threshold value of 0.5 for separating those cross correlations whose
signals in the causal and acausal sides are in phase and therefore result in a high SNR after averaging the
two, from those cross correlations which are highly asymmetric and averaging results in a lower SNR. For
those cross correlations with a CC value less than 0.5, we measured the dispersion curve on the side with the
higher SNR, with the assumption that it represents the dominant direction of ambient seismic energy propa-
gation. Likewise, if the CC is greater than 0.5, then the dispersion curve is measured on the symmetric signal.
During dispersion curve measurement, should any SNR be found to be less than 10, that measurement is dis-
carded. Furthermore, we disregarded measurements at periods for which the interstation distance is smaller
than three wavelengths.

To measure the group velocities, we follow the method of Bensen et al. [2007]. A series of Gaussian filters
are applied to the analytic signal, with center frequencies from 5 s to 100 s, in steps of 1 s period. The group
velocities are measured by finding the lag time of the maximum amplitude of the filtered signal and then
dividing the interstation distance by the measured lag time. The frequency of the measurement is taken to
be the instantaneous frequency, which is the time derivative of the phase at the measured lag time. This is
used because, when the spectrum of the signal is not flat, the central frequency of the Gaussian filter will not
accurately represent the frequency of the output [Bracewell, 1978].

3. Surface Wave Tomography

Each group velocity dispersion curve can be estimated to represent an average along the path between the
corresponding station pair. We construct a spherical shell of 10,041 grid nodes separated by 0.3° on average.
The grid nodes are derived through triangular tesselation of a sphere, as described by Wang and Dahlen
[1995] and used in Moho depth parameterization by van der Lee and Nolet [1997]. The dispersion curves are
regionalized by setting up an inverse problem in which we obtain the group velocity value needed at each
node in order to give the average group velocity measured along each path, for every period. In other words,
each row of our design matrix G is a set of coefficients derived through trilinear interpolation that relate
each station-station great circle path to the appropriate grid nodes. The inverse problem is solved using a
Python implementation of the LSMR routine of Fong and Saunders [2011]. LSMR is an iterative method for
solving least squares problems similar to the well-known LSQR method [Paige and Saunders, 1982] but has
been shown to converge sooner. Essentially, we are minimizing a misfit equation defined to be

SN\T -
() = <Gﬁ1 - d) ' <Gﬁ1 - d) + 2|FmI2 + 23 1)1, 2

where G is the design matrix relating the data vector d to the values at the model nodes of /, C;'is the
inverse of the data covariance matrix (in this case a diagonal matrix of the measured uncertainties), F is

a flattening matrix representing a discretized version of the first derivative operator, and I is the identity
matrix. The A values are scalars representing the strength of the flattening and damping. The values for the
A are chosen by plotting tradeoff curves of model complexity versus fit to the data. We construct d to be dif-
ferences between our measured group velocities and the group velocities predicted by iasp91 [Kennett and
Engdahl, 1991]. The model vector m then represents perturbations with respect to the iasp91 group veloc-
ity dispersion curve at every grid node. The final group velocity distribution maps are created by adding the
iasp91 group velocity dispersion curve to m. The solution for m in the least squares sense is

m=(G"C;'G+ A2FF+42) " G'C;'d. (3)

The large size and underdetermined nature of our inverse problem makes a quantitative estimate of the
model errors not feasible. To estimate the reliability of the final models, we perform resolution testing by
creating hypothetical Gaussian checkerboard models. We calculate a synthetic data vector by multiply-

ing G by the hypothetical model. To the synthetic data is added Gaussian noise scaled to the norm of the
measured uncertainties. The synthetic data are then inverted, and the results at 20 s period are shown in
Figure 4. In regions of low-data coverage, anomalies are smeared out along the dominant direction of the
raypaths. This can be seen in the northern portion of the Sea of Japan, and this effect becomes worse as the
size of the anomalies decreases. However, despite the relatively poor raypath coverage, larger size anoma-
lies (e.g., 5° x 5°) are retrieved fairly well, indicating that the large-scale features seen in our models are
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Figure 4. Resolution test at 20 s period for Gaussian anomalies of three different sizes. Gaussian anomalies of +£300 m/s are added to a flat background velocity
of 2 km/s. (a and b) The input model and retrieved model, respectively, for anomalies of size 5° x 5°. Likewise, (c and d) anomalies of size 2° x 2° and (e and f)
anomalies of size 1° x 1°.

robust. Elsewhere in the model, the Korean peninsula, the southern portion of the Sea of Japan, and Japan
are resolved very well.

To find portions of the region with inadequate data coverage, we attempt to retrieve a uniform model at
each period. A hypothetical model is created with a constant background velocity of 2.05 km/s. A synthetic
data vector is created for each period by multiplying G by the flat background model. After the addition of
Gaussian noise to the synthetic data, the data are inverted and the result is compared with the flat back-
ground model. Regions of the retrieved model where the amplitudes are less than or equal to +0.5% of the
flat background model are then used as masks for the group velocity distribution maps.

4, Results

Figure 5 shows group velocity distribution maps at periods of 10, 20, 30, 40, 50, and 70 s. At 10 s period,
low-velocity anomalies are prominent in the Sea of Japan, as the existence of a water layer and deep sedi-
mentary basins will effectively lower group velocities. On continental crusts, the 10 s Rayleigh wave is most
sensitive to middle crustal structures, and so we observe higher velocities in Korea and Japan in contrast
with sediment basins in the Sea of Japan. At 20 s period, we begin to see the dichotomy between continen-
tal and oceanic crusts. Because oceanic crust is thinner, Rayleigh waves at the same period sample higher
mantle speeds, as opposed to thicker continental crust, which is relatively slower. Previous studies [e.g., Lee
et al., 1999; Kim et al., 2003] have shown that crust in the Sea of Japan is thicker than usual oceanic crust,
and this agrees with our observations where we begin to see higher speeds in the Sea of Japan at longer
periods (>15 s).

At periods of around 30 s, Rayleigh waves are sensitive to contrasts in shear wave speeds above and below
the Moho discontinuity, and thus, we observe low-velocity anomalies in Japan where previous studies [e.g.,
Nishida et al., 2008; Zhao et al., 1992] have shown thicker than usual crust. Relative to speeds in Korea, we
can infer that Japanese crust should be thicker than that in Korea, which is in agreement with previous
studies of Moho depth in Korea from teleseismic receiver function analysis [e.g., Chang and Baag, 2007].
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Figure 5. Maps of Rayleigh wave group velocity distributions at (a) 10, (b) 20, (c) 30, (d) 40, (e) 50, and (f) 70 s period. (g and h) Predicted group velocity maps at
periods of 30 and 40 s period, respectively, from the LITHO1.0 model of Pasyanos et al. [2014].

At longer periods (> 40 s), we still observe the same low-velocity anomaly in Japan, and we begin to observe
the emergence of a low-velocity anomaly in the Ulleung basin region, which is bounded by the Korean
peninsula. In Figure 5, we also show Rayleigh wave group velocity distribution predictions at periods of

30 and 40 s, derived from the LITHO1.0 model [Pasyanos et al., 2014]. The LITHO1.0 model is a 1° tessel-
lated model of the crust and upper mantle, constructed by perturbing initial models to fit high-resolution
Rayleigh and Love wave dispersion maps in the period range 25 to 200 s. Compared to our results, the

30 s map predicts low-velocity anomalies in roughly the same regions, but not as low as we have mapped.
The 40 s map differs from our results, missing the low-velocity anomaly of the Ulleung Basin, and the
high-velocity anomaly in the southwestern Korean peninsula. These differences may be attributed to the
increase in local resolving power as a result of the addition of KMA and KIGAM data.

In Japan, the low-velocity anomaly at 40 s period is possibly due to the effects of partial melting occurring
above the subducting Pacific slab. As long-period Rayleigh waves are sensitive to variations in lithospheric
properties, the low-velocity anomaly in the Ulleung Basin region may be due to a contrast in the properties
of the lithosphere in the Sino-Korean craton and the lithosphere underneath the Sea of Japan and may be
attributable to a hotter than normal mantle below the Ulleung Basin. Horozal et al. [2009] used the depth
to clathrates in the 20 Ma old Ulleung Basin as an indicator of temperature. Relatively high temperatures
suggest heat flows above 105 mW/m?, which are high for a basin of this age. Kim et al. [2003] analyzed
multichannel seismic reflection and ocean bottom seismometer data across the Korean margin into the
Ulleung Basin and inferred the existence of a high P wave velocity layer (7.1-7.4 km/s) under the eastern
coast of Korea. They interpret this as evidence for magmatic underplating as a result of high upper mantle
temperatures. However, despite there being several lines of evidence for higher than normal upper man-
tle temperatures, the complexity of interpreting Rayleigh wave group velocity sensitivity kernels somewhat
obfuscates the origins of the group velocity anomalies. Future work will determine the 3-D seismic velocity
structure of the region using this data set.

5. Conclusions

Using 1 year of continuous broadband seismic data at 206 stations across Korea, China, and Japan, we have
derived 21,115 Rayleigh wave group velocity dispersion curves and estimated their uncertainties. Using
these measured dispersion curves, we have performed surface wave tomography to produce Rayleigh wave
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group velocity distribution maps in the period range 10 to 70 s. At 10 s period, we observe low velocities
in the Sea of Japan in contrast with higher continental crust velocities. The low velocities are due to the
water layer, with prominent low-velocity regions corresponding with sedimentary basins, such as the Ulle-
ung basin. At periods longer than 20 s, the Sea of Japan is observed as a high-velocity region relative to
continental regions, due to the thinness of oceanic-type crust. At periods of 30 to 40 s, low velocities in the
Chubu-Kanto regions indicate thicker crust than in the Korea peninsula. At periods of 40 to 50 s, low veloc-
ities in the Chubu-Kanto regions may be a result of partial melting above the subducting Pacific slab. From
40 to 70 s period, we observe the emergence of a prominent low-velocity region underneath the Ulleung
basin, bounded by the Korean peninsula, which may be a remnant of higher than normal mantle tempera-
tures associated with the rifting of the southwestern portion of the Sea of Japan. Further work will be aimed
at completing a point-by-point inversion of the group velocity maps to retrieve the Moho depth and a 1-D
velocity profile at each grid node.
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