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Supplemental Material

Detecting subtle signals from small earthquakes triggered by transient stresses from
the surface waves of large magnitude earthquakes can contribute to a more general
understanding of how earthquakes nucleate and interact with each other. However,
searching for signals from such small earthquakes in thousands of seismograms is over-
whelming, and discriminating them from a miscellany of noise is challenging. Here, we
explore howwe can automate the detection of such dynamically triggered earthquakes
using a simple, diagnostic signal-to-noise ratio (SNR) threshold as well as a convolu-
tional deep metric learning network. Our analysis shows that the deep learning net-
work was more reliable at detecting small earthquakes than the SNR method.

Introduction
Knowledge of dynamically triggered seismic events provides an
additional and unique perspective to our larger goal of under-
standing geologic faulting processes and seismic activity (Freed,
2005; Brodsky and van der Elst, 2014; Hill and Prejean, 2015).
During their propagation, surface waves from strong or large
magnitude earthquakes generate transient stresses and strains
that can trigger slip on faults thousands of kilometers from their
epicenters. In some cases, a slip is accompanied by tectonic
tremors (Chao et al., 2013; Chao and Obara, 2016), and in other
cases one or more earthquakes are triggered (Fig. 1) (Velasco
et al., 2008; Gonzalez-Huizar et al., 2012; Aiken and Peng, 2014),
sometimes up to days later (Van der Elst et al., 2013).

Although the size of these dynamic stresses has been impli-
cated in the occurrence of dynamically triggered tremor (Peng
and Gomberg, 2010), no simple relation appears to exist
between the size of dynamic stress and the triggering of an
earthquake (Wang et al., 2018). Some triggered or induced
earthquakes, however, have been found to correlate not with
the size of dynamic stresses but with the state or rate of rela-
tively static stresses such as increasing pore pressure (e.g., Van
der Elst and Brodsky, 2010; Weingarten et al., 2015; Quinones
et al., 2018). Therefore, finding instances of dynamically trig-
gered earthquakes with methods that rely only on the peak
ground velocity of a surface wave, which is a proxy for the peak
size of an important component of the dynamic stress tensor,
might be far from optimal.

Small triggered earthquakes release seismic energy instantly,
resulting in characteristic, sharp signal peaks that clearly show
up in low-noise seismograms recorded at nearby stations at
frequencies above 2 Hz. In theory, a high signal-to-noise ratio

(SNR) that takes advantage of this peak signal could serve as a
detection tool (Chao and Obara, 2016). In practice, however,
we find a significant number of spurious signals that also yield
a high SNR. These signals exhibit a high amplitude, as they do
in earthquakes, but are otherwise missing typical characteris-
tics of earthquake signals (e.g., no clear P and S arrivals), and
they may originate from environmental or instrumental
activity. Similarly, if earthquake signals are present and noise
is high, SNR values are low, leading to missed signals.
Therefore, whether the SNR is an effective way of automating
the detection of dynamically triggered earthquakes is still in
question.

Currently, the process of detecting potentially triggered
seismic events in well-studied, highly seismically active
regions is facilitated by matched filtering with template sig-
nals or faster equivalents from previously detected, repeating
earthquakes in the region (Van der Elst et al., 2013; Yoon
et al., 2015). However, for other regions and in more explor-
atory studies such detections are performed by human
experts. Researchers find themselves combing through thou-
sands of seismograms per earthquake, often adjusting the
data subsets, amplitude scales, the time windows, and fre-
quency band multiple times per seismogram to identify actual
earthquake signals among old and new types of glitches that
appear to be earthquake signals but are not. Automating this
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process, even partially, could save thousands of hours of
expert time (Velasco et al., 2016; Chao et al., 2017). Here,
we investigate methods that can examine all seismograms
rather than a subset. We explore whether machine learning,
in particular deep learning (Xing et al., 2002; Perol et al.,
2018), can facilitate and/or automate the detection of
dynamically triggered earthquakes.

The primary goal of this study is to train a deep learning
model, specifically a deep metric learning approach, to identify
signals from potentially triggered earthquakes in these seismo-
grams. In metric learning, one learns a distance metric for
examples (such as a group of seismograms with earthquake
signals) in which examples of the same class should be near
each other and those of different classes should be far apart.
Given such a metric space, and a data set of seismograms with
known class labels (e.g., earthquake vs. other), one can label
new seismograms automatically.

One simple way to do this is using a K-nearest neighbor
(KNN) approach. One measures the distance in the metric space
between a new seismogram and the seismograms with known
labels. A label is applied to the new seismogram by selecting the
most frequent label for the K-nearest seismograms. Another
obvious approach is to apply a Gaussian mixture model (GMM)
by fitting a Gaussian distribution to the set of earthquakes and

another Gaussian to the other events. A new seismogram can
then be classified by selecting the Gaussian that assigns the
highest probability to the new seismogram.

Learning the metric space so that one can effectively apply a
GMM or KNN classifier is often done by mapping examples
(e.g., seismograms) to points in a K-dimensional embedding
space. We learn an appropriate embedding space with a deep
convolutional neural network (CNN) that uses a deep cluster-
ing loss function to guide learning. This loss function (Hershey
et al., 2016) pushes embedding points belonging to the seismo-
grams of different classes apart while pulling those of the same
class together.

We train the algorithm on human-labeled seismograms
spanning a certain time window after large teleseismic earth-
quakes and apply it to detect local earthquake signals in a sim-
ilar seismogram time window after a separate large teleseismic
earthquake, the so-called testing earthquake.

Figure 1. Examples of the potentially dynamic triggering of (a) the
triggered earthquake and (b) an untriggered example following
the surface waves of the 27 February 2010 Mw 8.8 Chile
earthquake. The color version of this figure is available only in the
electronic edition.
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In the following sections, we first describe how to interac-
tively identify potentially dynamically triggered earthquake
signals in a data set of over 1000 seismograms from
several large-magnitude teleseismic earthquakes. The seismo-
grams were recorded by seismic station arrays in the United
States and the Himalaya–Tibet collision zone. We then
describe a deep neural net to make a useful metric space
and measure its performance by testing it on a subset of
our earthquake data sets. Finally, we compare the performance
of the deep learning model with that of a simple SNR approach.
The supplemental material provides details on some of the
data used.

Data
Data selection
We selected eight teleseismic earthquakes with magnitudes
greater than 7 between 2002 and 2010. Among these eight tele-
seismic earthquakes (Table 1), surface waves from the 2010
Mw 8.8 Maule, Chile, earthquake likely triggered a local earth-
quake in California (Peng et al., 2010). Two of the earthquakes,
in Siberia and Japan, triggered none to few far-field earth-
quakes. The other five earthquakes occurred near Sumatra
and Andaman Islands; their surface waves appear to have trig-
gered several local earthquakes in the Himalaya–Tibet region.
These earthquakes were selected based on previously published
detections of possibly triggered earthquakes (Yao et al., 2015;
Mendoza et al., 2016; Chao and Yu, 2018) and from additional
analysis of data in this region (Fig. 2, Figs. S1, S2). Seismograms
of these earthquakes were recorded by 882 stations from 10
networks (see Data and Resources) and obtained via the
Incorporated Research Institutions for Seismology Data
Management Center (IRIS-DMC), with the majority of the
data from Nabelek et al. (2009).

We labeled waveforms that contained clear signals from the
triggered earthquakes as positive examples and waveforms

without clear earthquake signals as negative examples.
Among all waveforms, 604 of the seismograms contain trig-
gered earthquake signals (e.g., Fig. 1a) whereas the remaining
569 of the waveforms do not (e.g., Fig. 1b).

We identified earthquake signals via visual inspection of the
seismograms at multiple time scales and in multiple frequency
bands. To simplify the identification of dynamically triggered
earthquakes, we define the triggering time window to contain
the first arrival of Love waves and the last arrival of direct
Rayleigh waves (Peng et al., 2011; Chao et al., 2013). Unlike the
earlier arrival of body waves that contain high-frequency
energy from the teleseismic hypocenter, the time window of
surface waves typically contains little high-frequency energy,
so it is easier to assign observed high-frequency energy to local,
triggered earthquakes. To determine the surface-wave time
window, we choose relatively loose bounding group velocities
of 5 and 2 km=s, respectively, to cut the beginning and end of
the window.

Data representation
We designed a data representation focused on the character-
istics of signals from small, local earthquakes and that was
minimally different from the raw time series. For each earth-
quake, we read in the seismograms in the surface-wave time
window for both the 604 positive and 569 negative examples.
We low-pass filtered all 1173 seismograms below 8 Hz while
transferring the recorded digital units to ground-velocity seis-
mograms and then high-pass filtered them above 2 Hz. Before
feeding the filtered waveforms into the neural network, each
waveform was standardized to have zero mean and unit vari-
ance. This was achieved for each waveform by subtracting the
mean and dividing by the standard deviation of the waveform
values (Aksoy and Haralick, 2001). This is a standard practice
in machine learning that allows neural networks to ignore
absolute amplitude as a distinguishing feature. The normalized

TABLE 1
Teleseismic Earthquake Information Used in This Study

Number
Date and Time
(yyyy/mm/dd hh:mm:ss.s) Longitude (°) Latitude (°) Depth (km) Mw

Positive
Example

Negative
Example

1 2002/11/02 01:26:25.9 96.0 2.7 23.0 7.2 57 35

2 2003/09/25 21:08:19.5 143.6 41.8 47.3 7.3 4 118

3 2003/09/27 11:33:36.2 87.9 50.0 15.0 7.2 0 81

4 2004/12/26 01:01:09.0 94.3 3.1 28.6 9.0 0 5

5 2004/12/26 04:21:36.5 92.8 6.6 13.6 7.2 129 14

6 2005/03/28 16:10:31.5 97.1 1.7 25.8 8.6 89 1

7 2005/07/24 15:42:16.2 91.9 7.9 12.0 7.2 227 14

8 2010/02/27 06:35:14.5 −73.2 −36.0 23.2 8.8 98 301
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data were then fed into a deep metric learning architecture for
training, which we describe in the following section.

Methods
Machine learning
Network architecture. We used a CNN to label a new
waveform as to whether it is likely to contain a signal from
a small, local earthquake during a time window that marks
the passage of surface waves from large distant earthquakes.
Deep neural networks typically require many thousands of
examples for effective training and generalization. Because
of the rarity of dynamically triggered earthquakes and the
amount of effort and expertise required to find and label these
events reliably, we have access to relatively little training data.
Even though we expand the data set below with waveforms
from regular small, local earthquakes, the total amount of data
remain insufficient for directly learning to classify individual
events as earthquake or no earthquake.

We use a deep metric learning approach because it takes
advantage of examples in relation to each other rather than
only to a particular class, which has the effect of increasing
the information that is fed into the network. If there are N
examples, this results in N2=2 pairwise relations. In metric
learning, examples are mapped to points in a K-dimensional
embedding space. If two examples are of the same class, they
should be near each other in the embedding space. A pair of
examples of different classes should be far apart.

Our neural network architecture takes filtered and stand-
ardized single channel recordings of a seismogram as input.

This representation (a time series) is processed by a stack of
neural network layers of neurons, each consisting of a convo-
lution, a batch norm, a rectified linear unit, and a max pool.
Each convolution has 16 channels, and there are 10 such layers
in the network. The resulting network is very small, consisting
of only 7440 parameters. We trained the network using an
Adam optimizer, a batch size of 128, and a learning rate of
2 × 10−5, with L2 regularization of 0.1. We trained for 100
epochs, in which one epoch consists of an entire run across
the training set. Each batch was constructed such that there
were an equal number of positive and negative examples from
the training set. We have data from eight earthquakes for train-
ing. Rather than randomly selecting one earthquake as provid-
ing testing data and the seven others as providing training data,
we did cross validation by giving each earthquake a turn at
representing testing data while the network is trained on data
from the remaining seven. In addition, we experimented with
an independent data set of 10 small local earthquakes (Table 2,
see the Results section).

The loss function. We used a deep metric learning approach
to overcome the paucity of available training data. In metric
learning, examples are mapped to points in a K-dimensional
embedding space. Examples of the same class should be near
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Figure 2. Map of the stations (triangles) and events (stars). Filled
stars represent the large earthquakes listed in Table 1, and open
stars represent the small earthquakes listed in Table 2. The color
version of this figure is available only in the electronic edition.
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each other in the embedding space, and examples of different
classes should be far apart. Learning how different points com-
pare to each other is a way of increasing the amount of avail-
able data as we now compare data points to each other, rather
than fit each data point in isolation. Therefore, N examples
result in N2=2 pairwise relations. Doing this has been shown
to effectively leverage data in machine learning paradigms for
which there would be insufficient labeled training data (Koch
et al., 2015; Sung et al., 2018) if examples were considered in
isolation.

The loss function we used to train our network was the deep
clustering loss function (Hershey et al., 2016). Deep clustering
works as follows: consider a set of seismograms X, with size N

by T , in which N is the number of seismograms in the set and
T is the length of each seismogram in samples. Our network
mapped each seismogram to an embedding of size K . The out-
put of the network across the entire set of seismograms is V ,
with size N by K . Each seismogram in the set has an expert
label (see the Data Selection section) that indicates whether
it contains a potentially triggered earthquake or not.
This label is either a 1 or a 0, respectively, for each earthquake.
For each seismogram, we constructed a one-hot encoding cor-
responding to its label. A one-hot label is a 1D vector with a 1
in the spot that corresponds to the index of the label and 0 s
everywhere else. In this application, there are two classes
(earthquake and no earthquake), which correspond to [1, 0]

TABLE 2
10 Earthquakes with a Magnitude of <3:6 for Expanding the Training Data Set

Number
Date and Time
(yyyy/mm/dd hh:mm:ss) Longitude (°) Latitude (°) Depth (km) Mw

Positive
Example

Negative
Example

1 2005/01/21 13:25:53 92.8 27.4 80.3 3.5 72 45

2 2005/03/05 12:19:24 84.1 28.1 33.0 3.5 137 72

3 2005/03/25 15:59:18 88.6 31.3 91.5 3.4 121 66

4 2005/04/02 01:55:39 94.6 24.3 95.8 3.5 87 37

5 2005/05/09 15:14:47 85.0 30.3 33.0 3.5 179 87

6 2005/05/22 20:30:08 89.2 34.1 10.0 3.3 117 30

7 2005/05/27 22:12:16 86.8 25.6 33.0 3.5 129 80

8 2005/06/06 08:36:13 81.6 35.7 10.0 3.6 85 39

9 2005/08/18 01:17:50 78.3 33.1 3.0 3.4 15 27

10 2005/08/21 19:53:33 80.8 30.1 33.0 3.5 60 41

TABLE 3
Metric Network (ML) and Signal-to-Noise Ratio (SNR) Accuracy Rate (Percentage) of the Test Data Set

Test Earthquake
(yyyy/mm/dd
hh:mm:ss.s) ML Accuracy

ML Accuracy (Includes
Small Earthquakes)

SNR Accuracy (Threshold
of 13.8)

SNR Accuracy (Learning
Threshold)

2002/11/02 01:26:25.9 92.4%, (P: 87.7%, N: 100%) 100%, (P: 100%, N: 100%) 83.7%, (P: 73.7%, N: 100%) 83.7%, (P: 73.7%, N: 100%)

2003/09/25 21:08:19.5 95.9%, (P: 75%, N: 96.6%) 99.2%, (P: 100%, N: 99.2%) 92.6%, (P: 100%, N: 92.4%) 92.6%, (P: 100%, N: 92.4%)

2003/09/27 11:33:36.2 91.4%, (P: n/a, N: 91.4%) 88.9%, (P: N/A%, N: 88.8%) 100%, (P: n/a, N: 100%) 100%, (P: n/a, N: 100%)

2004/12/26 01:01:09.0 100%, (P: n/a; N: 100%) 100%, (P: n/a, N: 100%) 100%, (P: n/a, N: 100%) 100%, (P: n/a, N: 100%)

2004/12/26 04:21:36.5 88.8%, (P: 87.6%, N: 100%) 90.2%, (P: 89.1%, N: 100%) 25.9%, (P: 17.8%, N: 100%) 25.9%, (P: 17.8%, N: 100%)

2005/03/28 16:10:31.5 100%, (P: 100.0%, N: 100%) 100%, (P: 100%, N: 100%) 98.9%, (P: 98.9%, N: 100%) 98.9%, (P: 98.9%, N: 100%)

2005/07/24 15:42:16.2 97.1%, (P: 99.6%, N: 57.1%) 97.5%, (P: 100%, N: 57.1%) 99.2%, (P: 99.1%, N: 100%) 99.2%, (P: 99.1%, N: 100%)

2010/02/27 06:35:14.5 88.7%, (P: 99%, N: 85.4%) 95.2%, (P: 93.9%, N: 95.7%) 98.5%, (P: 100%, N: 98.0%) 75.6%, (P: 100%, N: 67.7%)

P is the percentage of true positive examples (PtruePtotal
), N is the percentage of true negative examples (Ntrue

Ntotal
), and n/a represents no data.
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or [0, 1] as the possible one-hot encodings for each seismo-
gram. The set of labels is Y , which has size N by C, in which
C is the number of classes (C � 2, in this case). Now, consider
the ground-truth affinity matrix, YYT , which has size N by N .
Element (i; j) of YYT contains 1, if the corresponding seismo-
grams (i; j) have the same class. Otherwise, it contains 0. Now,
consider the estimated affinity matrix VVT , which also has size
N by N . Element (i; j) of VVT is the dot product of the K-
dimensional embeddings output by the network on the corre-
sponding seismograms in the set. The loss function of deep
clustering enforces that the estimated affinity matrix is close
to the ground-truth affinity matrix as follows:

EQ-TARGET;temp:intralink-;;53;587 LDC � jjVVT − YYT jjF2 :

Bymaking the estimated affinity matrices match the true affinity
matrices, we learn an embedding space in which seismograms of
the same class are near each other and those of different classes
are far away from each other. We trained the network using
batches from the training set. A batch contained 128 seismo-
grams, resulting in affinity matrices of size 128 by 128. A final
note: deep clustering was originally designed for audio source
separation and not for general metric learning problems. This
work is the first we know of that applies the deep clustering loss
function for metric learning in another domain.

Clustering in the embedding space. We used the network
as a feature extraction step from the seismogram. First, we
visualized the embeddings of the training data and ran each
training example through the network, producing embeddings
for each seismogram. Then, we projected the embeddings onto
a 2D space using principal component analysis (PCA). PCA is
a dimension-reduction technique that finds a lower dimen-
sional space in which each axis maximizes the variance in
the data. Because we reduce the embedding space to two
dimensions, we can easily visualize it (Figs. 3, 4). Points that
are far from one another in the 2D space are also far from one
another in the full embedding space.

The embedding outputs by the network for the training data
are linearly separable into earthquakes and no earthquakes
(Fig. 3). The contours in Figures 3 and 4 show the distribution
of the training data in the embedding space. Positive examples
(e.g., those that contain an earthquake) are contoured with
dashed lines and negative examples with dotted lines. The
dimensions of the plots in Figures 3 and 4 show the two dimen-
sions along which the embeddings have maximum variance;
overlapping points can still be separated in a third or higher
dimension. Codes are available (see Data and Resources).

We plot the test data as open white (positive) and black
(negative) circles. Strong overlap between the training and test-
ing distributions in the embedding space suggests excellent
detection performance. However, to determine whether our
machine learning approach is superior to other automated

methods that are computationally cheaper and easy to imple-
ment, we compare these results with those from using an SNR
threshold.

SNR
Straightforward attempts to automate the detection of dynami-
cally triggered earthquakes include computing an SNR
between a signal in the window of interest and pre-P-wave
background noise. The SNR is calculated for seismograms that
have already been bandpassed between 2 and 8 Hz by estimat-
ing the signal (S) as the maximum value of the seismogram
envelope within the surface-wave time window and the noise
(N) as the median of the seismogram envelope within a time
window immediately preceding the arrival of seismic waves
from a distant earthquake.

Results
Machine learning
To test the robustness of the performance of our algorithm, we
apply it for each of the eight training versus testing splits (e.g.,
events 2–8 as the training data and event 1 as the test data,
listed in Table 1). Each training data set contains about
1000 seismograms from the remaining seven of the eight earth-
quakes (Table 1). We then test the trained network on seismo-
grams from the remaining earthquake in Table 1, which is not
used for training (Fig. 3).

To assess the performance of the machine learning approach,
we define accuracy A as the fraction of true label examples
(Ptrue) in the test set divided by all examples (Ptotal) in the
test set:

EQ-TARGET;temp:intralink-;;320;352 A � Ptrue

Ptotal
:

For all of the training–testing splits, accuracy values are above
88%, shown in Table 3. Data projections onto the 2D subspace
of the embedding space (Fig. 3) show that both training and
testing data are well, though not entirely, separated. Detection
accuracy for the training data sets is consistently over 95%.

Clearly, using a deep metric learning approach leads to
acceptable levels of accuracy (>88%) even when few data
are available for training. To further improve the training of
our algorithm, we added data from 10 regular local earth-
quakes (Fig. 2) with magnitudes of less than 3.6. We processed
these data in the same way as we processed the data from the
large teleseismic earthquakes, except that we defined time win-
dows starting at random time shifts from the earthquake sig-
nals. In addition to these 1002 new positive examples, we also
selected negative examples using the same window length as
the positive example but shifting it to fall entirely before the
P-wave arrival. Because about half of the noise windows con-
tain spurious signals, we reduced the number of negative
examples to 524 seismograms. Including these additional
examples (Table 2), we retrained our algorithm and show
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results in Figure 4. This ex-
pansion of the training data
set increased the earthquake
detection accuracy for wave-
forms from earthquake 8
(Chile) by 6.5%. For several
other testing earthquakes, the
training expansion had the
effect of tightening the positive
and negative classes and
enhancing their separation,
while causing testing labels to
fall more outside of the learned
domains. Nevertheless, the
accuracy of the results remains
above 88%. Thus, we find that
our algorithm is relatively sta-
ble despite the data set being
small for a machine learning
application and continue to
use the original data set of
1173 seismograms.

Separation by SNR value
Figure 5 shows the distribution
of SNR values for the seismo-
grams from the earthquakes
listed in Table 1. From 604 pos-
itive examples and 569 negative
examples, we choose an optimal
SNR threshold of 13.8 (Table 1)
to separate the positive exam-
ples (SNR > threshold) from
the negative examples (SNR <
threshold). We labeled testing
seismograms with an SNR over
the threshold as positive and
the others as negative. Figure 5
shows that this approach pro-
vides variable detection accu-
racy of 25.9%–100% (Table 3).

We also explored the accu-
racy of detection with a learned
rather than fixed threshold. To
this end, we computed the root
mean square of the SNR for
only the training data set and
call this value the learned SNR
threshold. Figure S3 shows the
accuracy and SNR histograms
for each training–testing split
we also used in the machine
learning part of this article.
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Figure 3. Names and times of the test earthquakes listed in each figure. Projections of 2D spaces via
the principal component analysis (PCA) from the 10D embeddings. The convolutional neural
network (CNN) for classifying the training data set (contour maps) and the test data set (open
circles) from the teleseimic earthquakes. Each circle represents a seismogram, white circles
represent a positive event (e.g., an earthquake), and black circles represent a negative event. The
accuracy of the test earthquake is listed on the title of each figure.
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Perhaps surprisingly, Figure S3
shows slightly worse accuracy
values than Figure 5 and a
particularly low accuracy value
for the Sumatra earthquake 5
and the Chile earthquake 8
(Table 3), and Figure S2 shows
seismograms from the training
data set with the lowest and
highest SNR. Both examples
are from earthquake 8 (27
February 2010 Mw 8.8 Maule,
Chile, earthquake).

Discussion
In this article, we explored and
tested the potential effective-
ness of using a supervised
machine learning for identify-
ing seismograms that contain
signals from potentially
dynamically triggered earth-
quakes. The motivation for this
research stemmed from a need
to quickly and optimally iden-
tify instant triggered earth-
quakes. As we had access to
relatively few data to address
our problem, we chose a deep
metric learning network
approach over other machine
learning algorithms (e.g.,
ImageNet Krizhevsky et al.,
2012). By exploiting the rela-
tion between the examples in
our data set as a training signal
(e.g., both seismograms are
examples of potentially trig-
gered earthquakes) rather than
the relation between an exam-
ple and its class (e.g., this seis-
mogram does not contain an
earthquake), we effectively
squared the amount of data
we used to train the model.
To the best of our knowledge,
this work is the first applica-
tion of deep clustering to this
problem of dynamically trig-
gered earthquake detection.
We compared the success of
this approach to that of a
more straightforward approach
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Figure 4. Names and times of the test earthquakes listed in each figure. We add more data to the
training set from the 10 small earthquakes listed in Table 2. Projections of 2D space via PCA from
the 10D embeddings. A CNN for classifying the training data set (contour maps) and the test data
set (open circles) from the teleseimic earthquakes. Each circle represents a seismogram; white
circles represent a positive event (e.g., an earthquake), and black circles represent a negative event.
Accuracy of the test earthquake is listed on the title of each figure.
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based on an SNR threshold and
measured success in terms of
accuracy.

Table 3 lists eight training–
testing configurations with
accuracy values of over 88% for
the testing data. We also classi-
fied positive and negative exam-
ples by simply comparing the
SNR to a threshold SNR of
13.8. We measured the SNR for
each test earthquake (Table 3)
and observed that the 26
December 2004 Mw 7.2
Sumatra earthquake had the
lowest classification accuracy
25.9%. When used for testing,
the seven other earthquakes
each yielded higher classifica-
tion accuracies in the range of
83.7% to 100.0% (Fig. 5). We
observed a clear series of poten-
tially triggered earthquake sig-
nals during the surface-wave
windows of the 26 December
2004 Mw 7.2 Sumatra earth-
quake but also noted the pres-
ence of high-seismic energy in
the noise windows, yielding
low-SNR values for the positive
examples.

To discuss the performance
of the SNR and the metric net-
work, we selected data from
earthquake 1 (Sumatra) as a
representative testing data set
because it contains a relatively
even distribution of positive
and negative examples and also
leaves a relatively even distribu-
tion of positive and negative
examples for training. The clas-
sification accuracy of the SNR
method was 83.7% and that of
the metric network 92.4%.

The 27 February 2010
Mw 8.8 Maule, Chile, earth-
quake was a test case that pro-
vided several interesting results:
for one, the classification accu-
racy of the network for
detecting true positive examples
(Table 3) was high in the

0 1 2 3 4
log10(SNR)

0

50

100

150

200

250

300

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Training set)

0.5 1.0 1.5 2.0 2.5
log10(SNR)

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Testing set)

N
P

N
P

0 1 2 3 4
log10(SNR)

0

50

100

150

200

250

300

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Training set)

0.5 1.0 1.5 2.0
log10(SNR)

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Testing set)

N
P

N
P

2002/11/02 01:26:25.9 (Accuracy: 83.7%)

0 1 2 3 4
log10(SNR)

0

50

100

150

200

250

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Training set)

0 1 2 3 4
log10(SNR)

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Testing set)

N
P

N
P

2003/09/25 21:08:19.5 (Accuracy: 92.6%)

0 1 2 3 4
log10(SNR)

0

50

100

150

200

250

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Training set)

0.00 0.25 0.50 0.75 1.00
log10(SNR)

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Testing set)

N
P

N
P

2003/09/27 11:33:36.2 (Accuracy: 100%)

0 1 2 3 4
log10(SNR)

0

50

100

150

200

250

300

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Training set)

0.00 0.25 0.50 0.75 1.00
log10(SNR)

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Testing set)

N
P

N
P

2004/12/26 01:01:09.0 (Accuracy: 100%)

0 1 2 3 4
log10(SNR)

0

50

100

150

200

250

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Training set)

0.6 0.8 1.0 1.2 1.4
log10(SNR)

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Testing set)

N
P

N
P

2004/12/26 04:21:36.5 (Accuracy: 25.9%)

0 1 2 3 4
log10(SNR)

0

50

100

150

200

250

300

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Training set)

1 2 3
log10(SNR)

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Testing set)

N
P

N
P

2005/03/28 16:10:31.5 (Accuracy: 98.9%)

2005/07/24 15:42:16.2 (Accuracy: 99.2%)

0 1 2 3 4
log10(SNR)

0

25

50

75

100

125

150

175

200

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Training set)

0 1 2 3 4
log10(SNR)

N
um

be
r 

of
 e

xa
m

pl
es

Examples (Testing set)

N
P

N
P

2010/02/27 06:35:14.5 (Accuracy: 98.5%)

Figure 5. Histogram of signal-to-noise ratio (SNR) measurements from the teleseismic earthquakes
listed in Table 1. For each earthquake, the left histogram shows the base-10 logarithm of the SNR
of positive and negative examples in the training set, and the right histogram is the base-10
logarithm of the SNR results for the test set. The vertical dashed line, with an SNR of 13.8, is the
threshold of the SNR. The white bars represent positive examples, and the black bars represent
negative examples. The accuracy of the test set is listed on the title of each figure.
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training data set and higher than that for true negative examples.
In addition, this earthquake was the only earthquake recorded
by North American stations and its seismograms recorded dif-
ferent path and site effects than those recorded in the Himalaya–
Tibet region. Therefore, for this particular case, the training
data set consisted entirely of data from the Himalaya–Tibet
region.

In the process of applying both the simple SNR threshold
and the machine learning method to achieve the functional
detection of potentially triggered earthquakes, we found our-
selves increasingly winnowing our data set, which primarily
consisted of the removal of ambiguous data. The data set that
we eventually used consisted of only the clearest examples of
earthquake signals and clear absences of high-frequency sig-
nals in the surface-wave windows.

To test the algorithm on a less winnowed data set, we selected
35 positive examples and 35 negative examples as the test set,
which was slightly noisier (Fig. S4) than the clean data set in
Table 1. These data might have had a relatively high-noise level
or contained more than one type of signal. We used the clean
data set in Table 1 as the training set. For the testing data, we
found that the accuracy value of the machine learning algorithm
was 92.9% and that of the SNR was 78.6% shown in Figure 6.
From the projection of the 2D space figure, these 70 examples
were well separated. This finding indicates that our algorithm
was able to detect small earthquakes with various data sets
and was more than 10% more accurate than SNR.

To explore the necessity and limitations of neural networks,
we tested the convolution with 2, 4, 8, and 16 channels and the
network with 1, 2, 5, and 10 layers. Figure S5 indicates that if
the network has less than eight channels and/or the network
has only one layer, the accuracy of the testing set begins to
deteriorate. However, with eight channels and two layers,
the algorithm’s detection accuracy improves to nearly the levels
reported above for the full 10 layers and 16 channels network

(Figs. S6, S7 and Table S1). In the future, we plan to include
more data from different regions into the training set and
explore the possibility of detecting tremor, so we need to have
a stable and efficient algorithm with room for growth.
Therefore, we decided to use the convolution with 16 channels
and 10 layers network in this study.

Conclusion
Our analysis showed that our deep metric learning algorithm
performed better and more robustly at detecting small, local,
possibly triggered earthquakes than the SNR approach, and
allowed the use of a more diverse dataset. The trained deep met-
ric networks displayed a classification accuracy of higher than
88% for all test datasets. In this study, we focused on the iden-
tification of local earthquakes that occur during the passage of
teleseismic surface waves, but it is not restricted to either this
time window or to earthquakes. In principle, for example, our
machine-learning algorithm may also be applied to detecting
earthquakes at any time or to detecting triggered tremor.

Data and Resources
All of the seismic data were downloaded through the Incorporated
Research Institutions for Seismology Data Management Center (IRIS)
Wilber 3 system (http://ds.iris.edu/wilber3/find_event) and the IRIS Data
Management System (DMC) (http://ds.iris.edu/ds/nodes/dmc/data/).
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Figure 6. Test for the stability of the machine-learning algorithm
with a less winnowed data set in Table 1. We selected 35 positive
examples (white) of earthquakes that include earthquake signals
as well as relatively strong noise signals in the surface-wave
window and 35 negative examples (black) that do not include
earthquake signals but have high-SNR due to strong noise signals
in the surface-wave window. The accuracy of the machine-
learning algorithm is 92.9% and the SNR is 78.6%, and seis-
mograms are shown in Figure S4.
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They included the seismic networks of the USArray: (1) the AZ
(ANZA Regional Network, doi: 10.7914/SN/AZ); (2) the BK (Berkeley
Digital Seismic Network [BDSN] doi: 10.7932/BDSN); (3) the CI
(Southern California Seismic Network, doi: 10.7914/SN/CI); (4) the II
(Global Seismograph Network [GSN]-IRIS/International Deployment
of Accelerometers [IDA], doi: 10.7914/SN/II); (5) the IU (Global
Seismograph Network, GSN-IRIS/U.S. Geological Survey [USGS], doi:
10.7914/SN/IU); (6) the TA (USArray Transportable Array, National
Science Foundation [NSF] EarthScope Project); (7) the US (United
States National Seismic Network, doi: 10.7914/SN/US); (8) the XF
(Nepal–Himalaya–Tibet Seismic Transect, doi: 10.7914/SN/XF_2002,
Nabelek, 2002); (9) XR (Seismic Investigation of Edge Driven
Convection Associated with the Rio Grande Rift-Flex Array, doi:
10.7914/SN/XR_2008); and (10) the XV (Geometry and Kinematic
of Basement-Involved Foreland Arches, doi: 10.7914/SN/XV_2009).
GitHub codes are available at https://github.com/interactiveaudiolab/
earthquakes. All websites were last accessed August 2019. The supple-
mental material for this article includes examples of data, variants of
our implementation, and a table of results.
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