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Abstract

Dynamically triggered earthquakes and tremor generate two classes of weak seismic
signals whose detection, identification, and authentication traditionally call for
laborious analyses. Machine learning (ML) has grown in recent years to be a
powerful efficiency-boosting tool in geophysical analyses, including the detection
of specific signals in time series. However, detecting weak signals that are buried
in noise challenges ML algorithms, in part because ubiquitous training data is
not always available. Under these circumstances, ML can be as ineffective as
human experts are inefficient. At this intersection of effectiveness and efficiency,
we leverage a third tool that has grown in popularity over the past decade: Citizen
science. Citizen science project Earthquake Detective leverages the eyes and ears
of volunteers to detect and classify weak signals in seismograms from potentially
dynamically triggered (PDT) events. Here, we present the Earthquake Detective
data set - A crowd-sourced set of labels on PDT earthquakes and tremor. We apply
Machine Learning to classify these PDT seismic events and explore the challenges
faced in segregating and classifying such weak signals. We confirm that with an
image- and wavelet-based algorithm, machine learning can detect signals from
small earthquakes. In addition, we report that our ML algorithm can also detect
signals from PDT tremor, which has not been previously demonstrated. The citizen
science data set of classifications and ML code are available online.12 3

1 Introduction

Over the past five years, Machine Learning (ML) has progressively grown to be a popular tool in
geophysical analyses. Much of this research demonstrates the impressive efficiencies that can be

1https://www.zooniverse.org/projects/vivitang/earthquake-detective
2https://github.com/Omkar-Ranadive/Earthquake-Detective
3This paper is an updated version of the one presented at NeurIPS’20

AI for Earth Sciences Workshop at NeurIPS 2020.
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achieved by applying ML to tasks that are overwhelming for researchers from a data volume or
dimensionality perspective while relatively straightforward in complexity or signal strength (Liu et al.
(2020); Civilini et al. (2021); Reynen and Audet (2017a); Lin et al. (2018);). Few papers demonstrate
ML’s success in recognizing of low-amplitude signals in seismology Rouet-Leduc et al. (2017). Here
we leverage a crowd-sourced data set of weak seismic signals classified by citizen scientists Tang
et al. (2020a) in combination with a data set analyzed and labeled by experts (the authors) to establish
a baseline for detecting different types of weak seismic signals. The ultimate goal of this work is
to incorporate the ML algorithm in winnowing the data stream presented to citizen scientists and
experts.

One class of weak seismic signals are seismograms from earthquakes with magnitudes below the
magnitude of completion for typical earthquake catalogs. Yet these low-magnitude earthquakes
belong to the same Gutenberg-Richter distribution Gutenberg and Richter (1954) as widely recorded
earthquakes, including those that cause injuries, damage, and worse. Gutenberg and Richter’s law
(1954) states that for every magnitude (M) 8 earthquake that occurs, about 1 million M2 earthquakes
occur. Therefore, if we can detect the abundant low-magnitude earthquakes of the kind whose signals
are often buried in background seismic noise, their analyses could provide insights into the occurrence,
distribution, and physics of these and the much sparser damaging earthquakes.

Likewise, more recently investigated low-frequency earthquakes exist that represent slower slip
between two blocks of rock than that during classical earthquakes, but nevertheless generate weak
seismic signals that are often labeled as "tremor" Obara (2002), especially when many of such events
occur quasi-simultaneously.

Weak signals from tremor and from low-magnitude local earthquakes are both abundant (Rouet-Leduc
et al. (2018); Hill and Prejean (2015)) and somewhat under-reported because they have been hard
to detect. Past barriers to detection have included a sparse spatial distribution of seismic stations
(instrumented with buried seismometers), and current barriers include the weakness and limited
bandwidth of these weak seismic signals. These detection challenges have inspired the application of
machine-learning algorithms to large sets of seismic waveform data. Several of these ML algorithms
have successfully been trained to detect signals from local earthquakes (e.g. Ross et al. (2018); Tang
et al. (2020b)) while others Liu et al. (2019) used ML to detect tremor signals. Using ML in the
detection of signals from seismic activity is a rapidly growing field (e.g. Bergen et al. (2019); Meier
et al. (2019); Huang, 2019; Li et al. (2018); Riggelsen and Ohrnberger (2014); Ruano et al. (2014);
Reynen and Audet (2017b); Wiszniowski et al. (2021)).

Weak waveforms from abundant minor seismic events do not only add constraints to estimates of
seismic risk, which are based on regional variations in the rate at and mode in which earthquakes
occur, but also provide important information on where, when, and how they strike, allowing us to
learn about the conditions under which earthquakes nucleate, occur, and interact. Therefore, the
more we detect weak signals from minor seismic events, the more we learn about the physics and
potential hazards of seismic slip. For example, we can learn about the dynamics of earthquake
triggering by first detecting seismic events that occurred simultaneously with transient strain events,
then determining the likelihood that these seismic events were triggered by the strain events, followed
by examining the conditions under which such triggering does and does not occur (Tang et al. (2021)).

Here, our interests lie in detecting a special sub-class of the multitude of minor seismic events, namely
local earthquakes and tremor that could have been triggered by slowly-oscillating large-amplitude
seismic surface waves from large-magnitude teleseismic earthquakes. Reporting and learning more
about such Potentially Dynamically Triggered (PDT) events extends the spectrum of seismic slip data
available for study and adds information about how fast and slow-slip earthquakes might nucleate.
Traditional ways for detecting signals form PDT events are 1) seismologists interactively examining
seismograms and labeling detections after a range of signal inspections Gomberg et al. (2008), and 2)
seismologists developing and applying an automated detection algorithm to seismic waveform data
while controlling the quality of the detections by tweaking the algorithm’s parameters and handling
outliers separately (e.g. Velasco et al. (2008); Yun et al. (2021)).

In our quest to detect PDT seismic events we face a number of additional challenges:

1. The magnitudes (M) of PDT earthquakes are typically below the M of completeness of
earthquake catalogs, hence their signals are weak and often buried in ambient seismic noise
signals. Therefore, the database of template waveforms available for such low-M events is
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Figure 1: Example data plots shown to users on Earthquake Detective platform

small at best. Signals from low-M events are not only lower in amplitude than those from
higher-M events but also have narrower bandwidths, diminishing the efficacy of template
matching methods.

2. Unlike signals from dynamically triggered earthquakes, signals from dynamically triggered
tremor have different waveforms than those from typical tremor on account of the former
signals being modulated by the teleseismic surface waves that triggered them Chao et al.
(2012)). Therefore, a database of template signals is not available for training or other
purposes, although a catalog has been started Kano et al. (2018).

3. A signal from a PDT event can arrive at any time during the time window of surface
wave passage, which is much longer in duration than the PDT event signal. We have been
considering up to 33 minutes of surface wave duration in labeling whether or not at least
one local earthquake or tremor signal was recorded.

4. Non-stationary noise signals often exceed or are comparable in amplitude and duration to
the relatively weak signals of the PDT events we are interested in.

5. Optimal and accurate detection of signals from PDT events requires a multi-scale, multi-
band, multi-component interactive analysis that is labor-intensive. The formation of a large,
labeled data set for training purposes is hence not straightforward.

2 Earthquake Detective

Earthquake Detective is a crowdsourcing platform where volunteers are shown a seismogram of
vertical ground velocity vs. time (Figure 1), along with a sonification of the signal, and are asked to
classify the data as Earthquake/Tremor/Noise/None of the above. The platform currently has over
6000 volunteer scientists and over 130k classifications. Tang et al. (2020a) present an analysis of how
the volunteers and seismologists engage with the data.

All raw input data are time series of recorded ground motion with durations of 2000 s, which are long
enough to contain the time window needed by teleseismic surface waves to pass through. The raw
data is demeaned, deconvolved with the instrument response to convert digital counts to physical
units of ground velocity, band-pass filtered between 2-8 Hz with a 2-pole Butterworth filter, and
resampled at 20 samples per second.

3 Approach

3.1 Wavelet Scattering Transform

The wavelet scattering transform decomposes a signal using a family of wavelets. This new represen-
tation is stable against deformations and is translation invariant. This family of wavelets does not
need to be learned and hence, the features can be extracted without training which can then be passed
on further to Machine Learning models Oyallon et al. (2013). The Scattering Transform has been
successfully used by Seydoux et al. (2020) for clustering earthquakes in an unsupervised fashion.
The scattering transform works by successively convolving wavelets with the signal and applying
modulus non-linearity at each step. This can be shown as follows:

Sx(t) = ||x ∗ ψλ1| ∗ ψλ2|...| ∗ ψλm| ∗ φ (1)
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Figure 2: WavImg Model Architecture

where Sx(t) is the set of scattering coefficients obtained at step m, x(t) is the signal, ψλm
(t) denotes

the set of wavelets at step m and φ(t) is a low-pass filter.

In our experiments, we use the Kymatio library Andreux et al. (2020) to perform the scattering
transform and get a set of features which are passed on further to our supervised neural network
model.

3.2 Convolution over 3-channel plots

As the volunteers classify the data based on plots and associated audio records of vertical ground
motion, we decided to try out a similar approach with our model. Along with the wavelet coefficients,
we additionally provide the model with 3-channel plots (BHZ, BHE, BHN) as input. Image convolu-
tion is applied over the 3-channel plots and the resultant features are concatenated with the wavelet
coefficients and then passed through a fully connected neural network (FCN).

4 Experiments

For all experiments, we use the following hyper parameters: learning rate = 1e-5, batch size = 100,
epochs = 300. We perform a 3-way classification between Earthquakes/Tremors/Noise. As the
number of tremor samples is considerably less, we apply a weighted cross-entropy loss where the
weights are calculated as follows:

wi = Nlargest/Ni (2)
where wi is the weight assigned to class i, Nlargest is the number of samples of the largest class and
Ni is the number of samples of class i. For all experiments, we perform a 80-20 stratified train/test
split of the data. We test two models:

1. WavNet: In this model, we perform a wavelet scattering transform on 3-channel seismic
data (BHZ, BHN, BHE) and extract relevant features from it. These features (wavelet
coefficients) are then passed on to a 2-layer fully connected network.

2. WavImg: This model combines the Wavelet Scattering Transform with 3-channel convolu-
tion over the image plots. The combined features are then passed on through a 2-layer fully
connected network. (Figure 2)

4.1 Training the Machine Learning model

Training on clean data: To test the efficacy of wavelet transform, we first run a simple experiment
with WavNet. As an upper baseline, we first ran the experiment on clean data (data cleaned and
filtered by our seismologists, refer Appendix A). The model converges to 95.2% training and a 94.4%
testing accuracy.

Training on clean + gold users data: Compared to the clean data, the data from the Earthquake
Detective is difficult to segregate due to its low amplitude signals and larger time window (∼33 mins).
For this experiment, we consider data from gold users (Earthquake Detective data labeled by our
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Figure 3: Model comparison chart. (C = Clean, CG = Clean+Gold, All = Clean+Gold+Volunteer)

Table 1: Comparison of model reliability with volunteers

Metric ML Model∗ Volunteers Volunteers (top 35%)
F1-Score (Earthquake) 0.909 0.785 1.0
F1-Score (Noise) 0.914 0.738 0.975
F1-Score (Tremor) 0.888 0.415 0.924
∗Here model refers to WavImg All (Clean + Gold + Volunteer)

experts) and combine it with the clean dataset from the previous experiment. When this data was
trained on the WavNet, it gave a train accuracy of 75.4% and a test accuracy of 74.9%. Next, we
trained the same data using the WavImg model. This model produces a 91.4% train and 89.6% test
accuracy.

Training on clean + gold + volunteer’s data: Finally, we combine the previous data with data from
two volunteers. For each volunteer, we calculated a reliability score which includes a precision, recall
and f1 score for each class. These scores were calculated by comparing volunteer’s classification
with gold-set labeled by our experts. To handle the unreliability introduced in labels, we add an
additional gold-test set which consists of samples labeled from our gold users that were not used
for training. WavImg produces a 80.1% train accuracy, 83.6% test accuracy and 90.4% gold-test
accuracy. (Figure 3)

4.2 Results and Analysis

The WavNet model was able to perform extremely well on the clean data (95% accuracy) which
proves that wavelet scattering transform extracts relevant features which can then be trained using a
simple 2-layer FCN. However, due to the greater complexity of Earthquake Detective data, WavNet
by itself is insufficient. The WavImg model overcomes this problem by using information from
3-channel plots. One interesting case was the last experiment in which there was variance in training
due to label uncertainty (80% accuracy) but the model still performed well on the gold-test set (90.4%
accuracy). (Figure 3) This shows that the model still ends up learning useful representations despite
the uncertainty of the labels. For more in-depth analysis over select misclassified samples refer to
Appendix B.

4.3 Model Comparison with Volunteers

To see how reliable our model is in comparison to volunteers, we calculated the f1-score (reliability
score) of the model using the gold-test for each class separately. The f1-score is calculated as follows:

F1 = (2 ∗ precision ∗ recall)/(precision+ recall) (3)

where precision is TP/(TP + FP ) and recall is TP/(TP + FN), where TP is true positive, FP is
false positive and FN is false negative.

From table 1 we can see that the model is much more reliable for all classes when compared to all
volunteers. However, we found that the volunteers become more reliable than the model in all cases,
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when top 35% of them are selected. So this implies that while the model is better than an average
volunteer, it is still not as good as the top volunteers.

5 Conclusions

The Earthquake Detective dataset is the first crowdsourced dataset for potentially dynamically
triggered local earthquake and tremor signals. This is also the first time that potentially dynamically
triggered tremor signals were used in and detected by ML. Our experiments provide ML baselines
for the data. We have only trained our models on a small subset of the 130k+ samples available. Also,
from section 4.3 we saw that the top volunteers are better than the ML model. Therefore, when all
of the data is considered, better techniques to incorporate reliability scores into the model will be
required.

We encourage researchers to 1) use this dataset as a catalog for potentially dynamically triggered seis-
mic events, 2) augment the data and algorithms beyond the baseline, and 3) stream their data through
Earthquake Detective for accelerating labeling of their data sets and/or for validating previously
unlabeled ML results, by connecting with Earthquake Detective developers.

Broader Impact

This work might facilitate work by research seismologists, seismic network operators, and seismic
monitoring agencies and ultimately result in reducing risks posed by damaging earthquakes. Other
impacts include the engagement of volunteer scientists, via Earthquake Detective, with informal
STEM learning and analyzing authentic data.
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Appendix A: Data

Clean Data

1. A set of 1000 s-long waveforms with confirmed PT tremor signals, labeled by the seismolo-
gists among us. The waveforms were resampled at 20 samples per second and band-pass
filtered between 2 and 5 Hz. This data set is subdivided as follows:

(a) Waveforms recorded by seismic stations in Taiwan or Japan, trimmed around surface
waves from 6 large-M earthquakes in the eastern hemisphere (the Great Tohoku Earth-
quake, 1 more earthquake from Hokkaido, Japan, 1 from Qinghai, China, and 4 from
Sumatra, Indonesia). These are the positive examples.

(b) Waveforms recorded by seismic stations in Taiwan, Malaysia, Australia, and of the
Global Seismographic Network (GSN), selected for having no significant signals from
earthquakes or otherwise. These are the negative examples.

2. A set of 1000 s-long waveforms with confirmed PT local earthquake signals, labeled by the
seismologists among us. All data was band-pass filtered between 2 and 8 Hz.

(a) Waveforms recorded by seismic stations from USArray in the USA and the Hi-CLIMB
array in Tibet, trimmed around surface waves from the 2010 M8.8 Maule Earthquake
and 7 additional large-M earthquakes in the eastern hemisphere (1 from China, 1 from
Japan, and 5 from Sumatra, Indonesia). Waveforms that showed signals from local
earthquakes were labeled as positive.

(b) The waveforms from this set (2a) that were not labeled positive - they were labeled as
negative examples.

(c) Additional waveforms recorded by the Hi-CLIMB array from 10 random local earth-
quakes with M<3.6. This auxiliary data set was used to expand the set of positive
examples. An corresponding number of negative examples recorded by the same array
was added to the negative examples.
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Figure 4: Amplitude spectra for four 200-s subsets of a 2000-s wave train labeled as tremor and
misclassified as noise. Two subsets (red and magenta) represent noise and two (blue and green)
contain a tremor-like signal.

Data Distribution

• In the first experiment we used 551 earthquake samples, 570 noise samples and 39 tremor
samples from the clean data.

• In the second experiment (clean + gold users data), we had the following data distribution:
1031 earthquake samples, 1014 noise samples and 48 tremor samples.

• In the final experiment (which additionally includes the chosen volunteer’s data) had the
following data distribution: 3013 earthquake samples, 2436 noise samples, 203 tremor
samples.

Appendix B: Model Analysis

To gain further insights into how the WavImg model classifies, we looked at select examples. One
example is where the ML algorithm classified a wave train with tremor as a noise wave train. This
could be the result of

• There being two separate bursts of tremor,

• Both tremor signals being relatively short in duration,

• The tremor signals being weak,

• The tremor signals sounding different from more typical tremor signals

• The presence of non-stationary noise signals.

Extracting two 200-s tremor signals and two 200-s stationary noise signals from the 2000-s wave
train reveals that the the weak tremor signals have some additional power between 3 and 6 Hz,
compared to the noise (Figure 4). This is not entirely characteristic but still consistent for tremor
signals. Although the wave train was likely labeled correctly, the wave train is not a role model for
its class and hence may have confused the ML algorithm. In one other case labeled as tremor and
classified as earthquake, the tremor signal was so brief that is easy to mistake for an earthquake signal.
In another case, strongly peaked signals elsewhere in the wave train might have distracted the ML
from the tremor signal.

The type of waveform data used in our study contains a wild variety of noise signals, for which
we did not designate a single class. However such noise signals can interfere with the ability of
volunteers, and sometimes experts to correctly label wave trains. In at least 5 cases, wave trains with
noise signals, labeled as noise, were misclassified as earthquakes.
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Several other cases of misclassification by the ML algorithm can be traced to a mislabeling of the
original data. In three cases of wave trains with noise signals mislabeled as tremor, the ML algorithm
classified the wave trains as earthquakes. The ML algorithm also classified a case of mislabeled
tremor correctly as noise. In at least 4 cases, the ML algorithm correctly classified wave trains as
noise, while they were labeled as earthquakes. In these four cases, listening to and viewing spectral
properties of the wave trains confirmed in hindsight that these signals should have indeed been labeled
as noise.
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