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A B S T R A C T

Adjoint tomography, a full-waveform inversion technique based on 3D wave simulations, has become a
commonly used tool in passive-source seismology, drawing on advances in computational power and numerical
methods. From global to reservoir scales, seismic models can iteratively be updated in adjoint inversions by
extracting information from full seismic waveforms. Seismic models are typically constructed on the numerical
mesh used for wave simulations. Thus the size of model files depends on the minimum resolvable period
achieved in simulations controlled by the numerical mesh (the higher the mesh resolution, the larger the
model and mesh files). This is specifically a concern for recent global-scale adjoint tomographic models where
the size and format of numerical meshes pose challenges for model visualization, analysis, interpretation,
and sharing model files. Here, we present SphGLLTools, an open-source toolbox that intends to diminish
these challenges by expanding global adjoint models onto spherical harmonic functions, which are widely
used in global seismology. Our tools are initially designed for spectral-element meshes used in recent global
adjoint tomography studies. SphGLLTools facilitate many commonplace tasks for model visualization and
analysis, including spherical harmonic expansion of models sampled on spectral-element meshes together
with associated tools for easy sharing, visualization, and interpretation of large-scale seismic model files.
All the developed routines are accompanied by user instructions and are available through GitHub. For
transparency, reproducibility, and educational purposes, we also include Colab notebooks, which provide
an intuitive and comprehensive review of the principles and methods for spectral-element meshes, spherical
harmonic expansion, and other model analysis tools.
1. Introduction

Imaging Earth’s deep interior has been one of the major goals
of geophysics. Seismic tomography is a powerful technique where
seismologists use seismic waves generated by active or passive seismic
sources (i.e., explosions, earthquakes, ambient noise, etc.) and recorded
by seismic stations to infer Earth models for the spatial distribution
of seismic parameters. Improving the resolution of these models is
crucial for expanding insights into the inner structure, thermo-chemical
composition, and geodynamical evolution of our planet.

Traditionally, seismic tomography is based on ray theory, a high-
frequency approximation to describe wave propagation, which is valid
when the dominant seismic wavelength is less than the scale length of

∗ Corresponding author.
E-mail addresses: caio.ciardelli@alumni.usp.br (C. Ciardelli), bozdag@mines.edu (E. Bozdağ), daniel.peter@kaust.edu.sa (D. Peter),

suzan@earth.northwestern.edu (S. van der Lee).
URLs: https://ebrucsm.wordpress.com/ (E. Bozdağ), https://danielpeter.github.io/ (D. Peter), http://geophysics.earth.northwestern.edu/seismology/suzan/

(S. van der Lee).

heterogeneities (Wang and Dahlen, 1995b; Spetzler et al., 2001). Ray
theory has provided robust seismic models of Earth’s interior within
its validity regime, for instance, based on travel times of body waves,
surface-wave phase and group velocities, normal-mode splitting func-
tions, some S-wave and surface-wave waveforms, and the combination
of all these data types to improve data coverage at the global scale (e.g.,
Chang et al., 2014; Ritsema et al., 1999, 2011; Kustowski et al., 2008;
Moulik and Ekström, 2014). However, in the current resolution of
seismic models finite-frequency effects have become important (Wood-
house and Girnius, 1982; Marquering et al., 1999) and have been taken
into account in many global mantle models (e.g., Li and Romanowicz,
1996; Montelli et al., 2004).
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Ever-increasing computational power and advances in 3D numerical
wave propagation solvers have made full-waveform inversion (FWI)
feasible for large-scale passive-source tomography problems. First ap-
plications of FWI at the global scale combined full waveforms based
on 3D spectral-element wave simulations with 2D asymptotic data
sensitivity kernels (e.g., Lekić and Romanowicz, 2011; French and
Romanowicz, 2014). The adjoint method (e.g., Plessix, 2006) allows for
using 3D wave simulations in the computation of 3D data sensitivity
kernels (Fréchet kernels). The theory was introduced to seismology
by Tarantola (1984) where data sensitivity kernels of a chosen misfit
function may be computed based on the interaction of (1) a forward
wavefield, generated by a regular seismic source recorded by a regular
seismic station, and (2) an adjoint wavefield, generated by a fictitious
source based on the chosen misfit between data and synthetics at the
location of the regular station and recorded by a fictitious station at
the location of the regular seismic source (Tromp et al., 2005; Fichtner
et al., 2006a,b). Hence, to compute 3D volumetric data sensitivity ker-
nels, so-called adjoint kernels, and iteratively update seismic models,
only two numerical simulations, one for forward and one for adjoint
wavefields, are required (Tromp et al., 2005). There are now many
applications of adjoint tomography in earthquake seismology at the
crustal (e.g., Tape et al., 2009; Fichtner et al., 2013; Wang et al.,
2018) and continental (e.g., Fichtner et al., 2009; Zhu et al., 2012;
Chen et al., 2014; Zhu et al., 2015) scales. Finally, following the first
demonstration by Afanasiev et al. (2016), first global adjoint models
to image the whole Earth’s mantle simultaneously inverted with the
crust were published by Bozdağ et al. (2016), Lei et al. (2020). The
main advantage of FWI is the ability to extract more information from
each waveform in seismic inversions by modeling the full complexity
of wave propagation both in forward and adjoint wavefields based
on 3D numerical simulations. Furthermore, the crust and mantle can
simultaneously be updated in iterative inversions without the need for
crustal corrections (Bozdağ and Trampert, 2008; Ferreira et al., 2010;
Bozdağ et al., 2016).

FWI relies on high-accuracy seismic waveform simulations. The
spectral-element method has been most efficient for simulating 3D
wave propagation at the global scale due to its high-order accuracy
of the full wavefield and in particular of surface waves, important
for lateral coverage in global inversions (e.g., Komatitsch and Tromp,
1999; Chaljub et al., 2003; Capdeville et al., 2003; Komatitsch and
Tromp, 2002a,b). The spectral-element method combines the flexibility
of finite-elements to mesh complex structures together with a diagonal
mass matrix which significantly reduces the cost of simulations and
lends itself well to parallel computations on largest supercomputers. It
has been further employed at crustal and continental scales (e.g., Tape
et al., 2009; Zhu et al., 2012; Dong et al., 2021) as well as in industrial
studies of FWI where different meshing strategies have been proposed
to improve the resolution of numerical simulations (e.g., Trinh et al.,
2017; Teodor et al., 2019; Pan et al., 2020). For instance, Araújo
et al. (2021) managed to further optimize the spectral-element method
by boosting memory access with Hilbert space-filling curves. There
are also other efforts to address capturing complex structures effi-
ciently in numerical simulations such as combining the finite-difference
method with finite elements (e.g., Moczo et al., 2007; Gao and Keyes,
2019) and using meshless finite difference methods that do not re-
quire a predefined connection between nodes (e.g., Berljavac et al.,
2021). The spectral-element method is a finite-element method that
uses higher-order Lagrange basis functions in combination with so-
called Gauss–Lobatto–Legendre (GLL) nodal points (Komatitsch and
Vilotte, 1998; Komatitsch and Tromp, 1999). Numerical simulations
are performed based on a mesh sampled at every GLL point. Spectral
elements are a special kind of irregular grid where GLL points are
defined based on a GLL basis and then mapped to the desired shape.
Due to the chosen basis functions, the spectral-element method has
the accuracy of pseudo-spectral methods and the flexibility of finite
2

elements to mesh the computational domain (Komatitsch and Tromp,
2002a; Schuberth, 2003). The distribution of GLL points allows for
high accuracy and flexibility in simulations by solving the weak form
of the wave equation using Gaussian quadrature (e.g., Komatitsch and
Tromp, 1999; Schuberth, 2003), a high-accuracy numerical integration
method. The flexibility of spectral elements allows for accurately taking
3D variations in the crust, including topography, bathymetry. Spatially
variable crustal thickness can be honored by the mesh to improve
computational accuracy and efficiency, especially for surface waves
sampling the oceanic crust, by stretching and distorting the spectral
elements (Tromp et al., 2010). Homogenization of the crustal elastic
properties could further be used in FWI applications to reduce compu-
tational costs (Capdeville and Marigo, 2007; French and Romanowicz,
2014; Fichtner et al., 2013).

In principle, the tomographic model discretization follows three
main ideas: (1) adapt the parameterization to a priori information (e.g.,
finer discretization in the lithosphere, where we expect stronger hetero-
geneities than the rest of the model, increased spacing by depth, etc.),
(2) adapt and optimize the mesh in the numerical solver (i.e., because
of an increase in wavelengths by depth, element sizes in meshing
might be increased) in case of numerical simulations, and (3) adapt to
the data coverage in the inversion grid (i.e., address sparsity of data
in inversions). Thus, one would have three different grids, and the
problem lies in interpolating between them (Kissling et al., 2001). Gen-
erally, adaptive local grids (e.g., Zhou, 1996; Boschi and Dziewonski,
2000) or spherical harmonics (e.g., Li and Romanowicz, 1996; Ritsema
et al., 1999; Boschi and Ekström, 2002; Lebedev et al., 2005) are used
for horizontal parameterization with polynomials and splines in the
vertical direction. The choice of parameterization is one of the factors
that might control the resolution of tomographic models (e.g. Giardini
et al., 1988; Snieder et al., 1991). Typically, FWI models are sampled on
the mesh used for numerical simulations. The main advantage is that
sensitivity kernels, models, and all the generated mesh files have the
same spatial sampling so that models can be updated on the same mesh
that is used for numerical simulations (Bozdağ et al., 2016) during iter-
ative inversions. The drawback is that as the mesh resolution increases,
computational and storage requirements also increase. Alternative solu-
tions for reducing file sizes include compression methods (Boehm et al.,
2016) where the trade-off between the resolution and the size of the
models should be taken into account.

Sampling model files on GLL points makes it impractical to visu-
alize, investigate, and share models with other researchers because
of their large sizes, especially at the global scale. The recent global
adjoint models GLAD-M15 (Bozdağ et al., 2016) and GLAD-M25 (Lei
et al., 2020), for instance, are sampled by a mesh of ∼4 million spectral
elements with ∼268 million GLL points leading to an accuracy of ∼17 s
minimum period in numerical simulations. Then the total size of the
mesh and model files become ∼47 GB. The size of the model and mesh
files increases as the resolution of meshes increases to resolve shorter
wavelengths, and parallel computing is needed to extract cross-sections
at desired depths or great circles. A common way to share model files is
to provide downsampled model parameters in ASCII or binary formats
where the resolution can be degraded. More importantly, spectral-
element simulations require the actual model files sampled on a specific
mesh. Users need to interpolate and resample the original model files
to the desired simulation resolution and partition spectral elements to
different numbers of parallel processes. These complexities make the
visualization and interpretation of models and numerical simulations
at different resolutions impractical and time-consuming for users.

There is no consensus on model data formats to facilitate easy
sharing between researchers. Various plotting engines and visualiza-
tion tools are available in which seismic models are converted to a
specific data format in a model library. For instance, IRIS (Incorpo-
rated Research Institutions for Seismology) usually provides seismic
tomographic models in their original format or NetCDF format (net-
work Common Data Form) on the EMC (Earth Model Collaboration)

repository (Trabant et al., 2012; Hutko et al., 2017). EMC visualization
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tools help to extract and visualize model data and metadata. Downsam-
pled versions of the recent global adjoint tomography models (Bozdağ
et al., 2016; Lei et al., 2020) are provided through IRIS to overcome the
file size issue, reducing the model resolutions specifically in the litho-
sphere. Another example is the Oxford SubMachine (Hosseini et al.,
2018), which is a collection of web-based tools for the interactive
visualization, analysis, and quantitative comparison of global-scale,
volumetric (3-D) data sets of the subsurface, with supporting tools for
interacting with other, complementary models and data sets. Other
tools, such as Postpischl et al. (2011) and Yamagishi et al. (2018) use
the Keyhole Markup Language (KML) visualization layers (Burggraf,
2015) with the Google Earth geo-browser as a flexible platform that
can substitute specialized graphical tools to perform qualitative visual
data analyses and comparisons.

In this work, we provide a comprehensive set of routines for efficient
visualization of large seismic models initially for global adjoint models
based on spectral-element wave simulations. Strictly speaking, our
tools are designed for the global adjoint tomography models GLAD-
M15, GLAD-M25, and future models, which are constructed based on
the spectral-element mesher of the open-source SPECFEM3D_GLOBE
package (Komatitsch and Tromp, 2002a,b). Our open-source toolbox,
SphGLLTools, converts any spectral-element global model onto spher-
ical harmonics expanded up to a requested degree (see Section 3 for
further details about the expansion). Spherical harmonic expansion of
spectral-element models drastically reduces the size of files, allowing
for effective visualization and investigation of seismic models on a
laptop and sharing them efficiently with other researchers. The toolbox
also involves routines for creating block models (useful for parame-
terization of the crust), extracting and plotting horizontal & vertical
cross-sections and one-dimensional profiles at desired locations, and
computing global mean models in an efficient way based on spherical
harmonic expansions. The output is saved as plain ASCII files, which
are easily convertible to other formats (e.g., NetCDF) using external
tools such as Python, GMT6 (Wessel et al., 2019), and QGIS (QGIS
Development Team, 2009). In addition, we provide essential routines
for spherical harmonic expansions, such as improved interpolation and
smoothing tools that work on GLL meshes. SphGLLTools does not
presume prior knowledge of particular numerical meshes or spherical
harmonic functions. Users can go through each step and the per-
tinent theory by working through the accompanying Google Colab
notebooks. Fourteen Colab notebooks provide interactive Python shells
in which users can learn/review the theory and practice the algo-
rithms by changing parameters, etc. The toolbox and the accompanying
Colab notebooks are open source and have a manual that includes
application examples. Although the software is originally designed for
SPECFEM3D_GLOBE meshes, it can be adapted to other numerical
solvers in the future.

The manuscript is designed as follows: In Section 2 we give back-
ground information about spectral-element meshes and associated FWI
models. After giving the theory of spherical harmonic expansion in
Section 3.1 and showing how to combine them with B-splines to
carry out volumetric expansion in Section 3.2.1, we describe how we
expanded global adjoint models onto spherical harmonics by carefully
accommodating crustal variations in Section 3.2.2. We present the main
capabilities of SphGLLTools in Section 4 and an overall view of the
toolbox in Section 5 followed by conclusions.

2. Global FWI models

In spectral-element simulations, seismic model parameters (i.e., 𝑃 -
nd 𝑆-wave velocities, density, attenuation, etc.) are sampled on a
LL mesh. In large-scale simulations, such as those performed for
lobal adjoint tomography, the mesh is partitioned into many slices and
istributed over multiple cores for parallel processing. These slices are
ypically stored as binary files or using modern data formats such as
etCDF (Unidata, 2016), HDF5 (Koranne, 2011) or ADIOS (Liu et al.,
3

n

014). Unless model compression or some downsampling is applied, the
iles are sampled at every GLL point, leading to dozens of gigabytes of
isk space depending on the model resolution. For instance, the min-
mum resolvable period of spectral-element simulations of the recent
lobal adjoint tomography models (Bozdağ et al., 2016; Lei et al., 2020)
s 17 s (NEX = 256, where NEX is the number of spectral elements at
he surface on one side of each of six chunks of the globe), where the
odel size for a transversely isotropic parameterization is about 12 GB

nd 35 GB for model and mesh files, respectively. The size of the model
nd mesh files increases to about 78 GB and 230 GB, respectively,
hen the minimum resolvable period of global simulations goes down

o ∼9 s (NEX = 512).
One of the most common ways for visualization is performed by

he visualization software Paraview (Ahrens et al., 2005) after com-
ining all slices into a single VTU or VTK unstructured grid file or
y using a parallel VTU (Schroeder et al., 2006) (PVTU) file format.
araview allows for interactive 3D volumetric plots and the extraction
f horizontal and vertical cross-sections. Sample cross-sections plotted
y Paraview on a unit sphere are shown in Fig. 1. Creating VTU or
TK files before visualization requires direct access to the original mesh

iles, where generating them with the full resolution of the mesh may
equire parallel jobs to overcome the memory problems. Generally, for
lobal adjoint models, VTU or VTK files are created using only the
orner GLL points of each spectral element which may degrade the
odel resolution in plots, especially in the crust and upper mantle.
araview provides an efficient way of plotting models in 3D. However,
D cross-sections require additional steps, especially when we want to
hange the default projection.

For 2D depth slices and cross-sections, in seismology, it is com-
on to use the GMT (Generic Mapping Tools) (Wessel et al., 2019)

isualization package. To this end, depth slices at desired depths or
ertical sections along desired paths must be extracted from model
iles. This process requires running parallel jobs with the mesh files
nd the number of processors used for numerical simulations. In this
tudy, we expand global adjoint models sampled on spectral-element
eshes onto spherical harmonics, which drastically reduces the model

ile size allowing for easy sharing, visualization, and investigation of
lobal adjoint tomography models. Spherical harmonics are commonly
sed to horizontally parametrize ray-based global models together with
plines in the radial direction (e.g., Ritsema et al., 1999, 2011; Chang
t al., 2015). In our approach, we use spherical harmonic expansion
orizontally and B-splines for vertical parameterization, as we describe
elow. For instance, the expansion of the mantle of GLAD-M15 (Bozdağ
t al., 2016) onto spherical harmonics & B-splines (from the core-
antle boundary (CMB) to 80 km depth) occupies ∼29 MB disk space

nly. For the mantle of GLAD-M25 (Lei et al., 2020), the size increases
o ∼55 MB since a higher-degree expansion is required to capture
maller-scale heterogeneities in the model adequately. To overcome
he challenges of a spherical harmonic expansion due to the 3D crust,
e store the top 80 km as a block model in binary format, which

lightly decreases the advantage of our approach but increases the
obustness of our analysis and visualization toolbox. A block model
ith a 0.5◦ × 0.5◦ horizontal and 1 km vertical resolution occupies
537 MB and ∼253 MB disk spaces for decompressed and compressed

iles, respectively, in the XZ-format, a high-ratio file compression based
n the LZMA2 algorithm (Salomon, 2006).

. Spherical harmonic expansion of global adjoint models

Spherical harmonics are useful for expanding functions defined
n continuous surfaces with spherical symmetry. For low-frequency
ignals, a relatively small set of coefficients can accurately represent
he entire function. Spherical harmonics also provide a concise way
f analyzing the spectral content of data. We can think of them as a
eneralization of Fourier series (see the Colab notebook Fourier series)
n combination with associated Legendre polynomials (see the Colab

otebook Associated Legendre polynomials).
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Fig. 1. Sample model visualization using Paraview (Ahrens et al., 2005). (a) Depth slice of shear-wave velocity perturbations of S362ANI (Kustowski et al., 2008) at 100 km. The
velocity perturbations are computed with respect to the S362ANI’s mean model (see Appendix). The white lines show continent boundaries. (b) Same as (a) but showing vertical
cross-sections with a depth slice at the core-mantle boundary (CMB).
3.1. Spherical harmonics

Spherical harmonics are commonly used in global geophysical prob-
lems (e.g., Balmino et al., 1982; Carle and Harrison, 1982; Roithmayr,
2004; Schmidt et al., 2005). In seismology, some examples can be seen
in ray-based seismic tomographic models (e.g., Ritsema et al., 1999,
2011; Chang et al., 2015). Here we use real spherical harmonics, as
shown in Section B.8, Eq. B.99 of Dahlen and Tromp (1998). We begin
by parametrizing the associated Legendre polynomials 𝑃𝑚

𝑛 in terms of
cos (𝜃), such that

𝑃𝑚
𝑛 (cos 𝜃) =

(−1)𝑚

2𝑛𝑛!
(sin 𝜃)𝑚

[

𝑑
𝑑(cos 𝜃)

]𝑛+𝑚
(

cos2 𝜃 − 1
)𝑛

0 ≤ 𝑚 ≤ 𝑛 𝑚, 𝑛 ∈ N ,

(1)

where 𝜃 is the colatitude and cos (𝜃) changes over [0, 𝜋]. We define
𝑋𝑛, 𝑚 (cos 𝜃) as the normalized version of 𝑃𝑚

𝑛 (cos 𝜃) in the following
form:

𝑋𝑛, 𝑚 (cos 𝜃) =

√

(2 − 𝛿0𝑚)
(2𝑛 + 1)

4𝜋
(𝑛 − 𝑚)!
(𝑛 + 𝑚)!

𝑃𝑚
𝑛 (cos 𝜃) , (2)

where 𝛿0𝑚 is the Kronecker delta

𝛿0𝑚 =

{

1 if 𝑚 = 0
0 otherwise .

(3)

We can then expand a spherically symmetric function 𝑓 (𝜃, 𝜙), where 𝜙
is the longitude, onto spherical harmonics such that

𝑓 (𝜃, 𝜙) =
∞
∑

𝑛=0

𝑛
∑

𝑚=0

(

𝑎𝑚, 𝑛 cos𝑚𝜙 + 𝑏𝑚, 𝑛 sin𝑚𝜙
)

𝑋𝑛, 𝑚 (cos 𝜃), (4)

where

𝑎𝑚, 𝑛 = ∫

𝜋

−𝜋 ∫

𝜋

0
𝑓 (𝜃, 𝜙)𝑋𝑛, 𝑚 (cos 𝜃) cos𝑚𝜙 sin 𝜃 𝑑𝜃 𝑑𝜙 ,

𝑏𝑚, 𝑛 = ∫

𝜋

−𝜋 ∫

𝜋

0
𝑓 (𝜃, 𝜙)𝑋𝑛, 𝑚 (cos 𝜃) sin𝑚𝜙 sin 𝜃 𝑑𝜃 𝑑𝜙 .

(5)

The reader is referred to the Colab notebooks for more details about
spherical harmonics.

3.2. Volumetric expansion

Many global seismic models use spherical harmonics as basis func-
tions. For instance, 3D global mantle models S362ANI (Kustowski et al.,
2008) and S362D1 (Gu et al., 2001) use spherical splines (Wang and
4

Dahlen, 1995a) to parametrize lateral velocity variations and cubic
B-splines for radial parameterization. Splines are piecewise polyno-
mial curves that are differentiable up to a specific order (Prautzsch
et al., 2002). The degree 𝑛 = 1 spline, for example, is a set of
linear segments connecting the points to be interpolated. The so-called
natural cubic splines (𝑛 = 3) are commonly used for fourth-order
accuracy in interpolation, having 𝐶2 continuity (i.e., continuity up
to the second derivative) between successive interpolation points and
achieving minimum oscillation (Ahlberg et al., 1967). Spline functions
may be represented by a linear combination of basis functions known
as B-splines (see Section 3.2.1).

Spherical harmonics were introduced into global mantle tomog-
raphy by Dziewonski et al. (1977), in which the parameterization
consists of a set of spherical shells where each shell was independently
expanded onto spherical harmonics. Models S20RTS (Ritsema et al.,
1999) and S40RTS (Ritsema et al., 2011) are parametrized horizon-
tally in terms of spherical harmonics up to degrees 𝑁𝑚𝑎𝑥 = 20 and
𝑁𝑚𝑎𝑥 = 40, respectively, and radially with a set of 21 cubic splines.
S20A (Ekström and Dziewonski, 1998) uses spherical harmonics up to
degree 𝑁𝑚𝑎𝑥 = 20 horizontally, and the upper and the lower mantles
are parametrized separately by two sets of Chebyshev polynomials in
the radial direction. SAW24B16 (Mégnin and Romanowicz, 2000) is
parametrized by spherical harmonics up to degree 𝑁𝑚𝑎𝑥 = 24 to capture
lateral velocity variations and 16 B-splines in the radial direction. Our
choice to expand the global adjoint models GLAD-M15 (Bozdağ et al.,
2016) and GLAD-M25 (Lei et al., 2020) is similar to that of Mégnin
and Romanowicz (2000) which combines spherical harmonics over 𝜃, 𝜙
with cubic B-spline functions as a function of radius. In our case, we
use 25 B-splines (Fig. 2).

3.2.1. B-splines & spherical harmonics
Using B-splines, a spline function 𝑆 as a function of radius 𝑟 may be

represented by a linear combination of 𝑛-degree basis functions 𝐵𝑘, 𝑛 (𝑟)
over 𝑁𝑘 control points, such as

𝑆 (𝑟) =
𝑁𝑘
∑

𝑘=0
𝑐𝑘 𝐵𝑘, 𝑛 (𝑟) , (6)

where 𝑐𝑘 are the coefficients of the expansion given as (see also the
Colab notebook B-splines)

𝑐𝑘 = 𝐴𝑘, 𝑘′
−1

∫

𝑡𝑁𝑘

𝑡0
𝑓 (𝑥)𝐵𝑘′ , 𝑛 (𝑟) 𝑑𝑟 , (7)

𝐴𝑘, 𝑘′ =
𝑡𝑁𝑘

𝐵𝑘, 𝑛 (𝑟)𝐵𝑘′ , 𝑛 (𝑟) 𝑑𝑟 . (8)
∫𝑡0
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Fig. 2. Example of volumetric expansion 𝑆𝑛, 7 (𝑟, 𝜃, 𝜙) using eight cubic B-splines for degrees 0 (upper-left corner), 10 (upper-right corner), 20 (lower-left corner) and 40 (lower-right
corner) of 𝑓 (𝑟, 𝜃, 𝜙). On the left of each subfigure, we show the surface of the expansion. A depth slice of its interior appears on the right.
We can approximate a function 𝑓 (𝑟, 𝜃, 𝜙) by combining B-splines
and spherical harmonics, such as

𝑓 (𝑟, 𝜃, 𝜙) ≈
𝑁𝑠
∑

𝑠=0

∞
∑

𝑛=0

𝑛
∑

𝑚=0
𝑅𝑠 (𝑟)

(

𝑎𝑚, 𝑛, 𝑠 cos𝑚𝜙 + 𝑏𝑚, 𝑛, 𝑠 sin𝑚𝜙
)

𝑋𝑛, 𝑚 (cos 𝜃) , (9)

where the coefficients 𝑎𝑚,𝑛,𝑠 and 𝑏𝑚,𝑛,𝑠 are given as

𝑎𝑚, 𝑛, 𝑠 =
𝑁𝑠
∑

𝑠=0
𝐴𝑠′ , 𝑠

−1
∫

𝜋

−𝜋 ∫

𝜋

0 ∫

𝑟2

𝑟1
𝑅𝑠 (𝑟) 𝑓 (𝑟, 𝜃, 𝜙)𝑋𝑛, 𝑚 (cos 𝜃)

× cos𝑚𝜙 𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙 ,

𝑏𝑚, 𝑛, 𝑠 =
𝑁𝑠
∑

𝑠=0
𝐴𝑠′ , 𝑠

−1
∫

𝜋

−𝜋 ∫

𝜋

0 ∫

𝑟2

𝑟1
𝑅𝑠 (𝑟) 𝑓 (𝑟, 𝜃, 𝜙)𝑋𝑛, 𝑚 (cos 𝜃)

× sin𝑚𝜙 𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙 .

(10)

In Eq. (10), 𝑅𝑠 (𝑟) = 𝐵𝑠, 3 (𝑟) is the radial basis composed of cubic
B-splines where 𝐴𝑠′ , 𝑠 is given as

𝐴𝑠′ , 𝑠 = ∫

𝑡𝑁𝑠

𝑡0
𝐵𝑠′ , 𝑛 (𝑟)𝐵𝑠, 𝑛 (𝑟) 𝑟2 𝑑𝑟 . (11)

Fig. 2 shows an example for a test function given by the following
equation (see the Colab notebook Volumetric expansion)

𝑓 (𝑟, 𝜃, 𝜙) = cos (2𝜋𝑟)
(

1 +
sin 6𝜃 sin 6𝜙

10

)

, (12)

where 𝑟, 𝜃 and 𝜙 are defined over 0 ≤ 𝑟 ≤ 1, 0 ≤ 𝜃 ≤ 𝜋 and
−𝜋 ≤ 𝜙 ≤ 𝜋, respectively.

The ideal maximum degree of the expansion, 𝑁𝑚𝑎𝑥, may vary by
depth since we have different scale lengths of heterogeneities, for in-
stance, in the upper mantle, lower mantle, and the D’’ region. However,
a single basis function may span hundreds of kilometers in the radial
direction (Fig. 3). Therefore, one must cautiously determine the ideal
degree of expansion since a higher spherical harmonic degree than
the one required to capture the scale-length of heterogeneities may
introduce artificial numerical noise into the expansion. On the other
hand, regardless of the chosen expansion method, spherical harmonics
can be thought of as a kind of data compression technique where we
may lose some short-wavelength information while reducing the model
size.

3.2.2. Expansion of global adjoint models
Spectral-element meshes in the SPECFEM3D_GLOBE package consist

of three major zones: crust & mantle, fluid outer core, and the solid
inner core. A global mesh consists of six chunks surrounding a cube
5

of spectral elements at the center of the planet where the central
cube avoids the singularity at the origin of the spherical coordinate
system (Chaljub, 2000). The size of spectral elements is doubled once
below the crust-mantle boundary (Mohorovic̆ić or Moho discontinuity),
a second time below the 650 km discontinuity, and a third time just
above the inner core boundary (ICB) (Komatitsch and Tromp, 2002a) to
optimize the cost of global wave simulations. For 3D global models, the
mesh honors internal first-order discontinuities of the corresponding 1D
reference model, e.g., PREM (Dziewonski and Anderson, 1981), and 3D
crustal thickness variations for better accuracy of numerical simulations
by a denser sampling of specifically the thin oceanic crust (Tromp et al.,
2010).

B-splines and spherical harmonics cannot directly handle sharp first-
order discontinuities in the mesh (i.e., the Moho and upper-mantle
discontinuities, the CMB). As expected, the most challenging one is
the Moho discontinuity, which dramatically affects seismic wave prop-
agation, specifically of surface waves. During the construction of the
recent global adjoint models, the crust and mantle were inverted si-
multaneously (e.g., Bozdağ et al., 2016). The Moho discontinuity can
vary in depth from 7 km underneath oceans up to 70 km underneath
continents (i.e., Himalayas, Andes) (e.g., Bassin et al., 2000; Laske
et al., 2012) which causes significant oscillations in the spherical
harmonic expansion. To avoid numerical instabilities, we prefer to
represent the top 80 km of the Earth as a block model. The rest of
the mantle is split into three distinct mantle regions (the upper mantle,
the transition zone, and the lower mantle) and parametrized by a
volumetric expansion using B-splines and spherical harmonics. For this
study, we ignore the fluid outer core and the solid inner core as current
adjoint models only update the crust and mantle.

To create the block model for the top 80 km, we first switch off
the Earth’s ellipticity in the mesh by slightly stretching all spectral
elements. Then, we use interpolation to sample the mesh on a regular
grid from 80 km depth (the bottom of the second layer of spectral
elements) to the desired elevation (e.g., 5 km above the sea level). We
then create the block model at any desired resolution. For instance,
for the top 80 km of GLAD-M15 and GLAD-M25 we use a resolution
of 0.5◦ × 0.5◦ and 1 km horizontally and vertically, respectively. Once
we have the block model, we need an accurate interpolation scheme
for visualization and any other processes such as sampling the block
model with the spectral-element mesh when needed. We use trilinear
interpolation, which does not suffer from the Gibbs phenomenon at the

discontinuities present within the crust.
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Fig. 3. Left: Twenty-five cubic B-splines used in the radial direction in the GLAD-M15 expansion. The number and distribution of the B-splines within the upper mantle, transition
zone, and lower mantle are fine-tuned to achieve maximum accuracy. The mean 𝑉𝑆𝑉 as a function of depth (red line) and the reconstruction of the model from the B-splines 𝑆 (𝑥)
and the coefficients (black dashed line) are shown on the right of the figure. Right: Relative error between 𝑆 (𝑥) and the mean 𝑉𝑆𝑉 . The error is larger in regions with strong
heterogeneity (i.e., the uppermost mantle (∼0.5%) and the D’’ layer (∼0.25%)), and smaller in a less heterogeneous region (i.e., the lower mantle (<0.1%)).
For the rest of the mantle, instead of using a single set of cubic B-
splines to represent the whole model, we split the mantle into three
regions (the upper mantle, the transition zone, and the lower mantle)
and expand them onto spherical harmonics separately. We use 14 B-
splines in the lower mantle, 5 in the transition zone, and 6 in the
upper mantle (Fig. 3). We remove the topographic variations on the
upper-mantle discontinuities (i.e., 410 and 650 km) in the mesh by
stretching spectral elements to obtain fully spherical interfaces. This
procedure avoids interpolating mantle velocities across discontinuities
and, therefore, aliasing in the spherical harmonic expansions. It is also
more convenient for visualization to avoid sampling the upper mantle
and transition zone or the transition zone and lower mantle grid points
at a depth slice taken near one of these discontinuities.

In Section 3.2.1, we present the expressions to expand a generic
function 𝑓 (𝑟, 𝜃, 𝜙) defined on an arbitrary grid using a combination
of B-splines and spherical harmonics. In the GLL mesh, integration is
performed using Gaussian quadrature (see the Colab notebook Gaussian
quadrature), an accurate numerical integration method (see the Colab
notebook on Numerical methods). Therefore, the expressions for calcu-
lating the spherical harmonic coefficients of model parameters defined
on the GLL mesh (see the complete derivation in the Appendix B of Lei
et al. (2020)) becomes

𝑎𝑚, 𝑛, 𝑠 =
𝑁𝑠
∑

𝑠=0
𝐴𝑠′ , 𝑠

−1
∑

𝑒𝑙𝑒𝑚

∑

𝛼, 𝛽, 𝛾
𝜔𝛼 𝜔𝛽 𝜔𝛾𝑅𝑠 (𝑟) 𝑓 ′ (𝑟, 𝜃, 𝜙) 𝐽 𝛼, 𝛽, 𝛾

× 𝑋𝑛, 𝑚 (cos 𝜃) cos𝑚𝜙 ,

𝑏𝑚, 𝑛, 𝑠 =
𝑁𝑠
∑

𝑠=0
𝐴𝑠′ , 𝑠

−1
∑

𝑒𝑙𝑒𝑚

∑

𝛼, 𝛽, 𝛾
𝜔𝛼 𝜔𝛽 𝜔𝛾𝑅𝑠 (𝑟) 𝑓 ′ (𝑟, 𝜃, 𝜙) 𝐽 𝛼, 𝛽, 𝛾

× 𝑋𝑛, 𝑚 (cos 𝜃) sin𝑚𝜙 ,

(13)

where 𝑓 ′ (𝑟, 𝜃, 𝜙) is a discontinuous function representing the Earth’s
model parameters to be expanded, 𝜔𝛼 , 𝜔𝛽 and 𝜔𝛾 are the GLL weights
and 𝐽 𝛼, 𝛽, 𝛾 is the Jacobian.

Fig. 3 shows the setup for the radial B-splines of the three distinct
mantle regions and the 1D mean depth profile for the expansion of
GLAD-M15. Combining a block parameterization for the uppermost
mantle and the crust and the spherical harmonic expansions for the
rest of the mantle, we achieve less than 0.1% error in the crust,
except around the Moho of thick crustal regions (e.g., the Andes and
6

Himalayas), where the error can be as large as 0.5%. Note that clas-
sical ray-based global mantle models do not suffer from this problem
since they generally involve crustal corrections and start from 24 km
depth (e.g., Ritsema et al., 1999, 2011; Kustowski et al., 2008).

One of the advantages of carrying out independent expansions for
the upper mantle, the transition zone, and the lower mantle is that
we can use different degrees of spherical harmonics in each region,
depending on the required resolution to capture the scale-length of
heterogeneities. In GLAD-M15, for example, when expanding vertically-
polarized shear-wave velocities (𝑉𝑆𝑉 ), we use degree 𝑁𝑚𝑎𝑥 = 100 for
the upper mantle to fully capture the resolution of the GLL model.
However, for the transition zone and the lower mantle, lower degrees of
spherical harmonic expansions 𝑁𝑚𝑎𝑥 = 90 and 𝑁𝑚𝑎𝑥 = 80, respectively,
are enough. For GLAD-M25, we use degrees 𝑁𝑚𝑎𝑥 = 155, 𝑁𝑚𝑎𝑥 = 144,
𝑁𝑚𝑎𝑥 = 95 in the upper mantle, the transition zone, and the lower
mantle, respectively. These values are determined by trial and error
until the difference between the GLL model and its spherical harmonics
version is minimum. Reducing the maximum degree in the transition
zone and the lower mantle speeds up expansions. Furthermore, it also
avoids spurious oscillations in the deeper parts of the model, which may
happen when a higher degree expansion than needed is used.

The spherical harmonic expansion of global adjoint models with a
block model on top also facilitates their implementation into
SPECFEM3D_GLOBE, similar to other default global models in the
package such as S40RTS (Ritsema et al., 2011) and S362ANI (Kustowski
et al., 2008). This would allow users to change the resolution of
simulations and partition of spectral elements for parallel computing
without the need for interpolating meshes. For numerical seismic wave
simulations, one can then turn on the surface and internal topographies
and Earth’s ellipticity. The relative errors of the current spherical
harmonics and block parameterizations compared to the original GLL
model (Fig. 3) may affect numerical global wave simulations. Imple-
mentation of the spherical harmonic expansion of global adjoint models
into SPECFEM3D_GLOBE is part of future studies. We focus on the
visualization of these large-scale seismic models in this manuscript.

4. Visualization

In addition to expanding spectral-element models onto spherical
harmonics at desired degrees, SphGLLTools provides optimized C and
Python routines for multiple tasks, such as extracting horizontal and
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Fig. 4. (a) Depth slice of density from GLAD-M15 (Bozdağ et al., 2016) at 10 km depth. The green dots represent the hot spots compiled by Don L. Anderson using a large number
of sources, and the black lines denote the plate boundaries DeMets et al. (2010). (b) Transverse isotropy (logarithmic ratio between 𝑉𝑆𝑉 and 𝑉𝑆𝐻 ) of GLAD-M15 at 300 km depth.
Fig. 5. (a) Depth slice of vertically-polarized shear-wave velocities (𝑉𝑆𝑉 ) from GLAD-M15 at 100 km depth expanded up to degree 10. (b) Same as (a), but for spherical harmonic

expansion up to degree 100.
vertical cross-sections, one-dimensional profiles at desired points on
the surface, and computing power spectra of models. The package also
has routines that can read the complex GLL mesh structure, interpolate
it for spherical harmonic expansions, and take cross-sections directly
from the spectral-element mesh in ASCII format, which requires par-
allel jobs. The routines can also calculate model perturbations with
respect to the global mean of a chosen parameter (see Appendix). The
toolbox includes Python scripts to compute additional parameters such
as the bulk sound speed, transverse isotropy, 𝑉𝑃 to 𝑉𝑆 ratio, isotropic
velocities, etc. In addition, we provide a set of Shell scripts for plotting,
written in GMT6. Figs. 4 and 5 show examples of such depth slices.

A great benefit of using spherical harmonics is that we can create
cross-sections from the expansion with much less effort than using
interpolation of the original GLL models. There is no need for paral-
lelization, large memory, or storage. Any personal computer can be
used to visualize or compute additional parameters in a few minutes
or seconds, depending on the maximum degree of the expansion.
The models can easily be analyzed at different spherical harmonics
7

degrees (Fig. 5). Fig. 6 shows sample vertical cross-sections plotted by
the toolbox for absolute values and perturbations of SV velocities of
GLAD-M15, while one-dimensional sample profiles of the absolute SV
velocities and their perturbations as a function of radius are presented
in Fig. 7.

In Fig. 8, we illustrate the error introduced into models due to
the block model at 50 km depth where the error is less than ∼0.1%,
and spherical harmonic expansions at 110 km and 1600 km where
we observe the maximum ∼0.5% and minimum ∼0.06% errors (see also
Fig. 3). These errors are negligible from the model visualization point of
view and model interpretation. However, it should be noted that they
may significantly affect global surface wave propagation in case the
expanded models are used in numerical simulations.

4.1. Power spectra

Power spectra are useful for analyzing the spectral content of tomo-
graphic models (Chevrot et al., 1998). Following Eq. B.104 in Section
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Fig. 6. (a) Vertical cross-section of vertically polarized shear-wave velocities (𝑉𝑆𝑉 ) from GLAD-M15 along a great circle path (the black line connecting the flags in the inset map)
from the CMB up to 80 km depth. (b) Same as (a), but showing model perturbations instead of the absolute values. In both figures, we expanded the model up to the maximum
degrees in each zone: 100 for the upper mantle, 90 for the transition zone, and 80 for the lower mantle.
Fig. 7. (a) One-dimensional profile of vertically-polarized shear-wave velocities (𝑉𝑆𝑉 ) from GLAD-M15 at a given location (green point in the inset map) from the CMB up to
10 km depth. (b) Same as (a), but model perturbations instead of absolute values. In both figures, we expanded the model up to degree 40.
B.8 of Dahlen and Tromp (1998) and Eqs. B.9 & B.10 in the appendix
of Lei et al. (2020), we compute the normalized power per degree 𝜎𝑛2

as

𝜎𝑛
2 = 1

2𝑛 + 1

𝑁𝑠
∑

𝑠=0

𝑁𝑠
∑

𝑠′ =0
𝐴𝑠, 𝑠′

𝑛
∑

𝑚=0

(

𝑎𝑚, 𝑛, 𝑠 𝑎𝑚, 𝑛, 𝑠′ + 𝑏𝑚, 𝑛, 𝑠 𝑏𝑚, 𝑛, 𝑠′
)

, (14)

and the normalized power per degree as a function of radius 𝛴𝑛
2 (𝑟) is

determined as

𝛴𝑛
2 (𝑟) = 1

2𝑛 + 1

𝑁𝑠
∑

𝑠=0

𝑁𝑠
∑

𝑠′ =0
𝑅𝑠 (𝑟)𝑅𝑠′ (𝑟)

×
𝑛
∑

(

𝑎𝑚, 𝑛, 𝑠 𝑎𝑚, 𝑛, 𝑠′ + 𝑏𝑚, 𝑛, 𝑠 𝑏𝑚, 𝑛, 𝑠′
)

. (15)
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𝑚=0
Fig. 9 shows sample power spectra computed for S40RTS (Ritsema
et al., 2011) and GLAD-M25 (Lei et al., 2020) up to spherical har-
monics degrees 𝑁𝑚𝑎𝑥 = 40 and 𝑁𝑚𝑎𝑥 = 60, respectively. S40RTS is
a ray-based isotropic shear-wave velocity model constructed based on
body-wave travel times, normal-mode splitting functions, and surface-
wave dispersion data. GLAD-M25 is a global adjoint model which is the
result of 10 more L-BFGS iterations after GLAD-M15 (Lei et al., 2020)
where the power spectra show the smaller-scale heterogeneity content
of GLAD-M25 up to degree 𝑁𝑚𝑎𝑥 = 60 in the upper mantle down to
about 1200 km depth.
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Fig. 8. Illustration of the error introduced by the spherical harmonic expansion of GLAD-M25 (Lei et al., 2020) at 50 km depth (crust), 110 km depth (where the error in the
mantle is maximum), and 1600 km depth (where the error in the mantle is minimum). (a), (d) & (g) Shear-wave velocities of GLAD-M25 sampled on the spectral-element mesh
at 50 km, 110 km, and 1600 km depths. (b), (e) & (h) Same as (a), (d) & (g) but for GLAD-M25 expanded onto spherical harmonics. (c), (f) & (i) Error between the GLL version
of GLAD-M25 and its expansion at 50 km, 110 km, and 1600 km depths. In the crust 8(c), the error is usually less than 0.1%, except around the Moho of thick crustal regions
(e.g., the Andes and Himalayas), where it can be as large as 0.5%. In the mantle, the maximum errors are slightly lower than 0.5% and around 0.06% at 110 km and 1600 km,
respectively (see Fig. 3).
5. Overall view of the toolbox

SphGLLTools has additional routines to prepare GLL models for
spherical harmonic expansions such as the Gaussian smoothing (Sec-
tion 5.1) and interpolation (Section 5.2). Smoothing and interpolation
routines are also commonly used in the global adjoint tomography
workflow, for instance, to process the computed gradient and change
the mesh or the number of the compute nodes, respectively. We ex-
plain the theory behind these algorithms for educational purposes and
ensuring reproducibility. As previously mentioned, before expanding a
spectral-element model onto spherical harmonics, one needs to remesh
it on a spherically symmetric mesh using interpolation. Interpolation is
also needed to create a block model to represent the top 80 km of global
models. In addition to SphGLLTools visualization capabilities based on
spherical harmonic models, the toolbox also includes routines to take
horizontal and vertical cross-sections directly from spectral-element
meshes based on a high-accuracy interpolation scheme we developed.
These routines also assist spherical harmonic expansions to check their
9

accuracy where taken cross-sections and 1D profiles can directly be
compared to those from the GLL models.

5.1. Gaussian smoothing in a GLL mesh

One can apply Gaussian smoothing to any grid type, including a
GLL mesh. Usually, it is essential to smooth the numerically computed
gradient based on a chosen misfit function to remove the numerical
noise in the form of high-frequency artifacts (Komatitsch et al., 2016;
Bozdağ et al., 2016). On the other hand, smoothing can also be applied
to spectral-element models before interpolation, if needed, to avoid
potential numerical artifacts, which may also be useful to prevent
aliasing when interpolating to lower-resolution meshes. The Gaussian
smoothing is performed via convolution of the input model with a
Gaussian function 𝐺𝜎ℎ , 𝜎𝑣 (Eq. (17)), where 𝜎ℎ and 𝜎𝑣 are the half-widths
(semi-axis) of the Gaussian spheroid (ellipsoid of revolution) in the
horizontal and vertical directions ℎ and 𝑣, respectively (see the Colab
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Fig. 9. (a) Normalized power per degree of vertically-polarized shear-wave velocities (𝑉𝑆𝑉 ) for S40RTS (red) and GLAD-M25 (blue). (b) Normalized power per degree as a function
of depth of 𝑉𝑆𝑉 for S40RTS (left) and GLAD-M25 (right).
Table 1
Smoothing profiles. The first column contains the depth of the top of each layer. 𝜎ℎ𝑖 is
the horizontal smoothing (half-width of the Gaussian kernel in the horizontal direction,
i.e., the horizontal standard deviation) and 𝜎𝑣𝑖 is the vertical smoothing (half-width in
the vertical direction, i.e., the vertical standard deviation).

Depth (km) 𝜎ℎ1 𝜎𝑣1 𝜎ℎ2 𝜎𝑣2 𝜎ℎ3 𝜎𝑣3
−10 5 5 50 5 100 5
100 10 10 50 10 100 10
200 20 20 50 20 100 20
300 30 30 50 30 100 30
410 40 40 50 40 110 40
520 50 50 50 50 120 50
650 60 60 60 60 130 60
1000 70 70 70 70 140 80
2000 80 80 80 80 150 100

notebook on Gaussian smoothing for further details), such that

𝐺𝜎ℎ , 𝜎𝑣 (ℎ, 𝑣) = 𝑒
− 1

2

(

ℎ2

𝜎ℎ2
+ 𝑣2

𝜎𝑣2

)

𝑁
, (16)

where

𝑁 = ∫

∞

−∞ ∫

∞

−∞
𝑒
− 1

2

(

ℎ2

𝜎ℎ2
+ 𝑣2

𝜎𝑣2

)

𝑑ℎ 𝑑𝑣 . (17)

The Gaussian smoothing routine can use different filters at each
depth adapted according to the scale-length of heterogeneities in hor-
izontal and vertical directions. The algorithm ensures a smooth transi-
tion from one filter to another, thereby preventing numerical artifacts.
It can also preserve internal discontinuities if desired (Fig. 10).

5.2. Spectral-element interpolation

Interpolation is often needed to change the mesh resolution and
the number of parallel processes in spectral-element simulations. For
performance reasons, SPECFEM3D_GLOBE partitions the mesh into
many slices, one for each parallel process. The user chooses the number
of slices and the mesh resolution when creating the mesh. However,
once the mesh files are created, simulations must be run with the same
number of cores and mesh resolution. Spectral-element models must be
remeshed to change the number of cores for parallel numerical simula-
tions or the resolution of a mesh. This is accomplished by interpolating
the original mesh to re-partition and resample it onto the desired mesh
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resolution. Interpolation is also often needed to extract horizontal and
vertical cross-sections and 1D mean profiles of parameters directly from
the spectral-element mesh.

The spectral-element method uses Lagrange interpolation (see the
Colab notebook Lagrange interpolation), which can also be used for
our purposes. As explained below, using Lagrange interpolation re-
quires finding which spectral element encloses the point we want
to interpolate. Nevertheless, since the elements are usually distorted
and rotated (Fig. 11), figuring out which element contains each point
becomes challenging. That requires fitting polynomial surfaces to each
face of all elements, which is accomplished using a combination of
multiple interpolation schemes in one, two, and three dimensions.

One of the main advantages of using finite elements is that the GLL
mesh can deform to accommodate lateral variations in the Earth model.
Although each element has a unique shape, position, and orientation,
they can all be mapped to the canonical basis −1 ≤ 𝜉 ≤ 1, −1 ≤ 𝜂 ≤ 1
and −1 ≤ 𝛾 ≤ 1 (where 𝜉, 𝜂, and 𝛾 are orthogonal spatial coordinates)
and easily integrated using the Jacobian of the transformation (see
the Colab notebook Spectral-element interpolation). However, we can
only use Lagrange polynomials when the dimensions of elements are
independent of each other, such as in the canonical basis (𝜉, 𝜂, 𝛾). That
means elements must be rectangles (in 2D) or regular hexahedrons (in
3D) with all faces parallel to the planes formed by all the three axes of
the reference system. However, when we transform them to another
basis such as (𝑥, 𝑦, 𝑧) or even (𝑟, 𝜃, 𝜙), they usually undergo distor-
tions, and the coordinates lose their linear independence and become
coupled. Therefore, we always apply interpolation in the canonical
domain.

Although Lagrange polynomials work just fine, for performance rea-
sons, in our implementation, we assemble a linear system of equations
to fit a 3D polynomial to each spectral element on the standard basis
in which all elements are identical. Once we have the coefficients,
we can reuse them to interpolate any other element. In this paper,
we call that approach generic interpolation (see the Colab notebook
Generic interpolation). The shape functions (Komatitsch and Tromp,
1999, 2002a) are the map that transforms (𝜉, 𝜂, 𝛾) values from the
standard basis to (𝑥, 𝑦, 𝑧) values on another basis (the corresponding
coordinate in the deformed spectral element). When the map is linear,
the inversion is trivial, and for a given set of (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) values, we can
use the inverse map to calculate the corresponding (𝜉𝑖, 𝜂𝑖, 𝛾𝑖) values.
When the map is nonlinear, numerical optimization methods (such

as Newton’s method or other Householder’s methods) can be used to
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Fig. 10. S362ANI (Kustowski et al., 2008) with different degrees of smoothing (see Table 1 for the values of smoothing parameters). (a) Vertically-polarized compressional-wave
velocities (𝑉𝑃𝑉 ) without smoothing. (b) 𝑉𝑃𝑉 values smoothed using the horizontal and vertical standard deviations 𝜎ℎ1 and 𝜎𝑣1, respectively. (c) 𝑉𝑃𝑉 values smoothed using the
standard deviations 𝜎ℎ2 and 𝜎𝑣2. (d) 𝑉𝑃𝑉 values smoothed using the standard deviations 𝜎ℎ3 and 𝜎𝑣3 preserving the 410 and 650 km discontinuities.
reverse the mapping (see the Colab notebook Householder’s methods).
Once we find (𝜉𝑖, 𝜂𝑖, 𝛾𝑖), we can interpolate the values using either
Lagrange polynomials or generic interpolation.

Because we define Lagrange polynomials for the whole space, in
theory, they should also work outside a spectral element. However,
when there are regions in which the Jacobian becomes singular, we
cannot always carry out the inverse mapping from (𝑥, 𝑦, 𝑧) to (𝜉, 𝜂, 𝛾).
To overcome this problem, one should always check which spectral
element encloses the point we want to interpolate before inverting
the mapping using the respective Jacobian. To check whether that
condition is fulfilled, we need to fit 2D surfaces to each of six faces of
an element (Fig. 11). In SPECFEM3D_GLOBE, by default, each spectral
element has 125 (5 × 5 × 5) GLL grid points and 27 (3 × 3 × 3) control, or
anchor, nodes for the mapping. That leaves us with nine control nodes
on each face. Thus, we need to fit quadratic surfaces 𝑃 (𝑥, 𝑦) in the
11
following form

𝑃 (𝑥, 𝑦) =
2
∑

𝑖=0

2
∑

𝑗 =0
𝑎𝑖𝑗 𝑥

𝑖 𝑦𝑗 = 𝑎00

+ 𝑎10 𝑥 + 𝑎01 𝑦

+ 𝑎11 𝑥 𝑦 + 𝑎20 𝑥
2 + 𝑎02 𝑦

2

+ 𝑎21 𝑥
2 𝑦 + 𝑎12 𝑥 𝑦

2

+ 𝑎2 2 𝑥
2 𝑦2 .

(18)

Although the generic polynomial interpolation can handle a dis-
torted grid, the accuracy of results may be affected depending on how
uneven the nodes distribution is, potentially leading to surfaces with
extreme curvatures. However, it is possible to mitigate the problem if
we choose the correct orientation of each face. We should parametrize a
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Fig. 11. (a) Global mesh for S362ANI showing all the internal points and connections focusing on the doubling layer in the middle of the lower mantle (Komatitsch and Tromp,
2002a). (b) Schematic representation of the 27 control nodes (red and orange) inside a spectral element in the doubling layer. The interpolation algorithm compares the relative
position of a point (blue) to surfaces fitted to each of the six faces to check whether the point (blue) is inside or outside the element. The surface (green) fits the nine nodes (in
red) at the upper face of the element (Eq. (18)). Note that spectral elements from doubling layers may impose challenges for interpolation. When fitting the surface to the face
becomes numerically unstable, the algorithm resorts to alternative interpolation methods such as constrained interpolation (Eq. (19)).
face whose normal vector predominantly points the 𝑧 direction in terms
of (𝑥, 𝑦). On the other hand, if the face points mainly in the 𝑦 direction,
we should parametrize it as 𝑃 (𝑥, 𝑧). Analogously, we should use 𝑃 (𝑦, 𝑧)
for any surface primarily oriented in the 𝑥 direction. Nevertheless,
checking the orientation usually is not enough to guarantee the best
fitting. In our implementation, we use a brute-force approach that
consists of fitting surfaces for all three directions and picking the best
one based on the norm of the coefficients, the mean surface curvature,
and the residuals. When the algorithm fails to fit a surface (Eq. (18))
to the nine nodes, it automatically resorts to an alternative approach,
which consists of fitting only the four corner nodes of the face using
the following equation:

𝑃 (𝑥, 𝑦) = 𝑎00 + 𝑎10 𝑥 + 𝑎01 𝑦 + 𝑎11 𝑥 𝑦 + 𝑎20 𝑥
2 + 𝑎02 𝑦

2 . (19)

Since there are infinitely many surfaces in the above form that
contain all four points, a reasonable idea would be to choose the one
with minimum curvature. By imposing that the quadratic terms are
as small as possible using Lagrange multipliers, the two additional
terms become zero when we have a regular grid, and we perfectly
recover the bilinear interpolation. We call that approach constrained
interpolation (see the Colab notebook Constrained interpolation).

For our particular case, we enhanced the method by including the
central node of the face as well. We end up with five nodes to fit and
six unknowns. Again, we avoid the underdetermination by imposing
a minimum-curvature surface. The penalty for using a lower-degree
polynomial is that, sometimes, when a face is trying to accommodate
sharp topographic variations (such as the Himalayas), the simplified
surface cannot represent all the complexity properly. When that occurs,
we observe large residuals between the surface and some of the points
in the face. To address such cases, we apply corrections to surfaces to
reduce the residuals using a relatively simple yet robust interpolation
scheme known as Inverse Distance Weighting (IDW). IDW is an inter-
polation method that works for any number of dimensions and with
any data set distribution. In general, it does not provide a high-quality
result. However, the simplicity, robustness, and flexibility of IDW make
it useful for applications where we cannot apply other methods or
when high accuracy is not needed. Besides, unlike the nearest-neighbor
12
algorithm, it provides a smooth interpolation. The corrections are
calculated using all the 9 control nodes of each face, and no search
radius is required. Using more sophisticated methods such as natural
neighbor interpolation (Sibson, 1981) or kriging (Matheron, 1963)
would likely lead to superior topographic corrections but also increase
the algorithm complexity and the computational cost. These corrections
are relevant for just a few spectral elements, and IDW provides enough
accuracy to address such cases at a lower computational cost. It is worth
noting that the goal of these corrections is to ensure that all points are
properly assigned to their respective enclosing elements. Provided that
the assignment is correct, extra accuracy in these corrections would not
impact the model interpolation quality. For more details on IDW, see
the corresponding Colab notebook Inverse distance weighting.

6. Conclusion

We present SphGLLTools, a toolbox designed to facilitate easy vi-
sualization, processing, and analysis of large-scale tomographic models
defined on spectral-element meshes by expanding them onto spheri-
cal harmonics while keeping the top 80 km as a block model. The
SphGLLTools toolbox allows for easy and practical visualization of
spectral-element models using either direct interpolation or the flexible
expansion using spherical harmonics while taking advantage of GMT6
to create high-quality images. The additional routines in the tool-
box operate on spectral-element meshes in parallel for interpolation,
remeshing, and smoothing, which are useful for the adjoint tomography
workflow that encompasses creating a new adjoint model and future
studies using different resolution computational resources. We also lead
the reader through a comprehensible yet intuitive explanation of the
theory and concepts used by the routines in Colab notebooks available
at https://github.com/caiociardelli/sphglltools/tree/main/doc.

The spherical harmonic expansion of spectral-element models signif-
icantly reduces the size of GLL models by several orders of magnitude
and allows for a convenient way of analyzing, sharing, and exploring
them on personal computers. As an example, as mentioned in Section 2,
the original GLAD-M15 and GLAD-M25 models sampled on their cor-

responding GLL meshes occupy 47 GB of disk space each (including
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model and mesh files). On the other hand, the expansions in B-splines &
spherical harmonics of the whole mantle of GLAD-M15 and GLAD-M25
occupy only ∼29 MB and ∼55 MB, respectively. The high-resolution
block crustal models of GLAD-M15 and GLAD-M25 down to 80 km
depth occupy ∼537 MB. In the future, we will implement spherical
harmonic models directly in the numerical solver to run seismic wave
simulations at different mesh resolutions and the number of proces-
sors, avoiding intermediate steps like mesh interpolation and model
partitioning.
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ppendix

Following Tarantola (2005), we use the logarithmic of the model
arameters ln [𝑀 (𝐱)], where 𝐱 denotes the position. It follows that a
erturbation is:

𝑙𝑛 [𝑀 (𝐱)] = ln [𝑀 (𝐱)] − ln
[

𝑀𝑟𝑒𝑓 (𝐱)
]

= ln
[

𝑀 (𝐱)
𝑀𝑟𝑒𝑓 (𝐱)

]

, (20)

where 𝑀 (𝐱) is the perturbed model, and 𝑀𝑟𝑒𝑓 (𝐱) is the reference
odel. In our case, 𝑀𝑟𝑒𝑓 is the one-dimensional mean model 𝑀𝑚𝑒𝑎𝑛. By
ean model, we refer to the arithmetic mean of the three-dimensional
odel per depth. However, the above result is not balanced as the mean

f the perturbations is close, but not exactly zero. To overcome that
roblem, we use instead:

𝑙𝑛 [𝑀 (𝐱)] = ln
[

𝑀 (𝐱)
]

−
{

ln
[

𝑀 (𝐱)
]}

. (21)
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But, with some manipulation of the right-hand side:

𝑑𝑙𝑛 [𝑀 (𝐱)] = ln [𝑀 (𝐱)] − ln
[

𝑀𝑚𝑒𝑎𝑛 (𝐱)
]

−
{

ln [𝑀 (𝐱)] − ln
[

𝑀𝑚𝑒𝑎𝑛 (𝐱)
]}

𝑚𝑒𝑎𝑛

= ln [𝑀 (𝐱)]˂˂˂˂˂˂− ln
[

𝑀𝑚𝑒𝑎𝑛 (𝐱)
]

˂˂˂˂˂˂+ ln
[

𝑀𝑚𝑒𝑎𝑛 (𝐱)
]

− 1
𝑁

𝑁
∑

𝑖=0
ln

[

𝑀𝑖 (𝐱)
]

= ln [𝑀 (𝐱)] − 1
𝑁

ln

[ 𝑁
∏

𝑖=0
𝑀𝑖 (𝐱)

]

= ln [𝑀 (𝐱)] − ln

[ 𝑁
∏

𝑖=0
𝑀𝑖 (𝐱)

]

1
𝑁

= ln [𝑀 (𝐱)] − ln
[

𝑀𝑔𝑚𝑒𝑎𝑛 (𝐱)
]

= ln
[

𝑀
𝑀𝑔𝑚𝑒𝑎𝑛 (𝐱)

]

,

(22)

where 𝑀𝑔𝑚𝑒𝑎𝑛 is a one-dimensional geometric-mean model.
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